

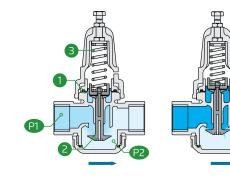
REDUTOR DE PRESSÃO AJUSTÁVEL DE AÇÃO DIRETA

Modelo 1.5-PRV

O Redutor de Pressão de Ação Direta Ajustável BERMAD é acionado por um diafragma sensível à pressão, que busca atingir o equilíbrio entre a força hidráulica e a força da mola ajustada. O Modelo BERMAD 1½"-PRV é construído com materiais compostos que lhe conferem excelente desempenho hidráulico e alta resistência mecânica. Ele reduz a pressão elevada a montante para uma pressão constante e mais baixa a jusante, independentemente da variação de demanda ou da pressão a montante.

[1] O Modelo BERMAD 1½"-PRV protege as laterais e conexões contra pressão excessiva e garante o fluxo dos gotejadores conforme o projeto.

Benefícios e Características


- Materiais Avançados de Construção
 - Alta resistência mecânica
 - Resistência comprovada à pressão, fluxo e intempéries
- Redutor de Pressão de Ação Direta Ajustável
 - Pressão constante do fluxo de saída
 - Resposta imediata
 - Configurável de acordo com a temporada e o estágio
- Corpo e Trim em compósitos
 - Altamente durável, resistente a produtos químicos e cavitação
 - Minimiza o atrito
- Diafragma Rolante Unificado e Obturador com Guia
 - Regulagem precisa e estável
 - Evita a distorção do diafragma
- Design Fácil de Usar
 - Pode ser instalada em qualquer orientação
 - Inspeção e Serviço Simples em Linha

Aplicações Típicas

- Risers (tubos de elevação) Laterais da Linha de Distribuição
- Fixação de Fluxo de Linha de Gotejamento Sem Compensação
- Proteção Contra Ruptura de Final de Linha Lateral
- Redução de Pressão para Zonas de Fluxo Marginais
- Controle de Fluxo de Aspersores para Máquina de Irrigação (¾" - Válvula Redutora de Pressão (PRV))
- Fixação de Fluxo de Aspersor Único (¾" Válvula Redutora de Pressão (PRV))

Operação:

A Pressão a Montante [P1] aplica forças hidráulicas equilibradas de abertura e fechamento sob o Diafragma 🚺 e acima do Plugue 🔼 A Pressão a Jusante P2 aplica força hidráulica de fechamento sob o plugue, que busca atingir o equilíbrio com a força da Mola de Ajuste [3]. Se [P2] subir acima do ajuste, as forças hidráulicas de fechamento superam a força mecânica da mola, empurrando o plugue para modular o fechamento e reduzindo [P2] de volta ao ajuste.

Dados Técnicos

Classe de Pressão:

10 bar

Faixa de Pressão Operacional:

0.7-9 bar

Temperatura:

Water up to 60°C

Faixa de Fluxo:

 $0.5-8 \text{ m}^3/\text{h}$

Materiais

Corpo e Tampa:

Poliamida 6 e 30% GF

Diafragma:

NR, tecido de nylon reforçado

Mola:

Aço inox

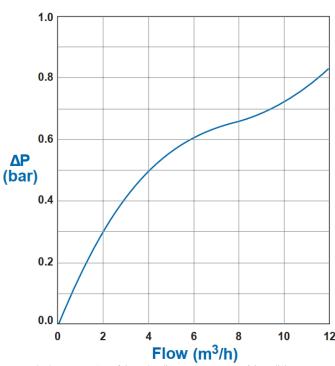
Tabela de Seleção das faixas de ajuste das Molas:


Mola	Cor da Mola	Faixa de ajuste		
Α		0.5-0.9 bar		
В		1-1.5 bar		
С		1.6-2.4 bar		
D		2.5-3.7 bar		
Q		3.8-5.2 bar		

Especificações Técnicas

Para outros tipos de padrões e conexões de encaixe, consulte a página de engenharia completa da <u>BERMAD</u>.

Tamanho (DN)	Modelo	Conexão de Encaixe	Peso (Kg)	L (mm)	H (mm)	h (mm)	w	KV
1½" ; 40	1½"-PRV	Rosqueado	0.48	114	155	30	65	11


Entrada e Saída Rosqueadas: Fêmea BSP ; Fêmea NPT

1.5-PRV Seção Transversal

Parte	Descrição
Α	Parafuso de Ajuste
В	Tampa
C	Mola de Ajuste
D	Diafragma Rolante
E	Conjunto do Atuador
F	Corpo

Gráfico de Fluxo

Para calcular a pressão mínima de alimentação necessária, adicione o ΔP no Gráfico de Fluxo para o ponto de ajuste desejado da Válvula Redutora de Pressão (PRV).

Cálculo de Fluxo e Diferencial de Pressão

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$

$$Kv = m^3/h @ \Delta P \text{ of 1 bar}$$

$$Q = m^3/h$$

$$\Delta P = bar$$

www.bermad.com

As informações aqui contidas podem ser alteradas pela BERMAD sem aviso prévio. A BERMAD não se responsabiliza por quaisquer erros.

November 2025