

# Serie PRV Riduttore di Pressione

# RIDUTTORE DI PRESSIONE REGOLABILE AD AZIONE DIRETTA

# Modello 1.5-PRV

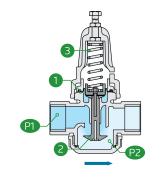
Il Riduttore di Pressione a Azione Diretta Regolabile BERMAD è azionato da un diaframma sensibile alla pressione, che cerca di raggiungere l'equilibrio tra la forza idraulica e quella della molla impostata. Il Modello BERMAD 11/2"-PRV è realizzato in materiali compositi che gli conferiscono eccellenti prestazioni idrauliche e un'elevata resistenza meccanica. Riduce la pressione a monte più elevata a una pressione a valle costante inferiore, indipendentemente dalla domanda variabile o dalla pressione a monte fluttuante.

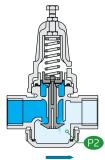




[1] Il modello BERMAD 1½"-PRV protegge le linee laterali e i raccordi da pressioni eccessive e garantisce la portata dei gocciolatori secondo il progetto.

# Caratteristiche e vantaggi


- Materiali da costruzione avanzati
  - Elevata resistenza meccanica
  - Comprovata resistenza alla pressione, al flusso e agli agenti atmosferici
- Riduttore di Pressione ad azione diretta regolabile
  - Pressione costante a valle
  - Risposta immediata
  - Impostabile in base alla stagione e alla fase
- Corpo e rivestimento in Composito
  - Altamente durevole, resistente agli agenti chimici e alla cavitazione
  - Riduce al minimo l'attrito
- Diaframma rotante unificato e spina guidata
  - Regolazione precisa e stabile
  - Previene la distorsione del diaframma
- Design intuitivo
  - Può essere installato con qualsiasi orientamento
  - Ispezione e assistenza in linea semplici


# Applicazioni tipiche

- Linea di distribuzione Lateral Risers
- Fissaggio del Flusso in Linea di Gocciolamento non compensante
- Protezione laterale contro lo scoppio finale
- Riduzione della pressione per lotti marginali
- Controllo del Flusso dell'Irrigatore della Macchina di Irrigazione
- Fissazione del Flusso a Spruzzatore Singolo

### Operazioni:

La Pressione a Monte [P1] applica forze idrauliche bilanciate di apertura e chiusura sotto il Diaframma [1] e sopra il Tappo [2]. La Pressione a Valle P2 applica una forza idraulica di chiusura sotto il tappo, che cerca di raggiungere l'equilibrio con la forza della Molla di Regolazione [3]. Se [P2] supera il valore impostato, le forze idrauliche di chiusura superano la forza meccanica della molla, spingendo il tappo a modulare la chiusura e riportando [P2] al valore impostato.





## Dati Tecnici

Pressione d'esercizio:

10 bar

Intervallo di Pressione Operativa:

0.7-9 bar

Temperatura:

Water up to 60°C

Intervallo di Flusso:

 $0.5-8 \text{ m}^3/\text{h}$ 

#### Materiali

Corpo e Coperchio:

Poliammide 6 e 30% VF

Diaframma:

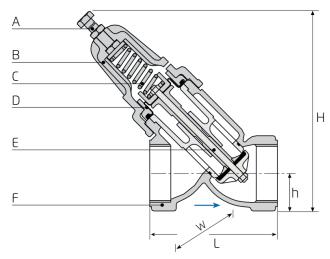
NR, Tessuto in nylon rinforzato

Molla:

Acciaio Inox

#### Impostazione della tabella di selezione delle molle:

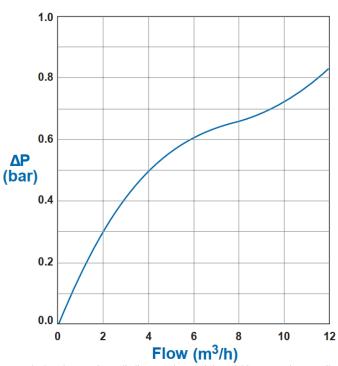
| Molla | Colore Molla | Range di<br>Regolazione |
|-------|--------------|-------------------------|
| Α     |              | 0.5-0.9 bar             |
| В     |              | 1-1.5 bar               |
| С     |              | 1.6-2.4 bar             |
| D     |              | 2.5-3.7 bar             |
| Q     |              | 3.8-5.2 bar             |


#### Specifiche Tecniche

Per altri modelli e tipi di connessioni terminali,

Consultare la pagina di progettazione completa di BERMAD.

| Diametro | Modello | Connessione | Peso (Kg) | L (mm) | H (mm) | h (mm) | W  | KV |
|----------|---------|-------------|-----------|--------|--------|--------|----|----|
| 1½" ; 40 | 1½"-PRV | Filettato   | 0.48      | 114    | 155    | 30     | 65 | 11 |


Ingresso e uscita filettato: femmina BSP; femmina NPT



## 1.5-PRV Sezione trasversale

| Parte | Descrizione          |
|-------|----------------------|
| Α     | Vite di regolazione  |
| В     | Coperchio            |
| С     | Molla di regolazione |
| D     | Diaframma rotante    |
| Е     | Gruppo attuatore     |
| F     | Corpo                |

#### diagramma di flusso



Per calcolare la pressione di alimentazione minima richiesta, aggiungere il ΔP nel diagramma di flusso al set point PRV desiderato.

#### Differenziale di Pressione e Calcolo della Portata

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h \otimes \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$



#### www.bermad.com