

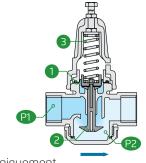
RÉDUCTEUR DE PRESSION RÉGLABLE À **ACTION DIRECTE**

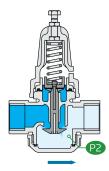
Modèle 1-PRV

Le réducteur de pression à action directe réglable BERMAD est actionné par une membrane sensible à la pression, qui cherche à atteindre un équilibre entre la force hydraulique et la force du ressort de réglage. Le modèle BERMAD 1"-PRV est fabriqué en matériaux composites, ce qui lui confère d'excellentes performances hydrauliques et une grande résistance mécanique. Il réduit une pression amont élevée à une pression aval constante et plus basse.

- [1] Le modèle BERMAD 1"-PRV protège les latéraux et les raccords contre une pression excessive et garantit un débit des goutteurs conforme à la conception.
- [2] Vanne contrôlée GreenApp modèle IR-21T
- [3] Ventouses automatiques modèle IR-A10

Caractéristiques et avantages


- Matériaux de construction avancés
 - Haute résistance mécanique
 - Résistance éprouvée à la pression, au débit et aux intempéries
- Réducteur de pression réglable à action directe
 - Pression aval constante
 - Réponse immédiate
 - Réglable en fonction de la saison et de l'étape
- Corps et garniture en composite
 - Très durable, résistant aux produits chimiques et à la cavitation
 - Minimise la friction
- Diaphragme roulant unitisé et bouchon guidé
 - Régulation précise et stable
 - Empêche la déformation du diaphragme
- Conception facile d'utilisation
 - Peut être installé dans n'importe quelle orientation
 - Inspection et entretien simples en ligne


Applications types

- Elévateurs latéraux pour lignes de distribution
- Fixation non compensatrice du débit de la conduite d'égouttement
- Protection latérale contre les éclats finaux
- Réduction de la pression pour les parcelles marginales
- Régulateur de débit de gicleurs pour machines pour l'irrigation (¾ pouces -PRV)
- Fixation du débit d'arrosage unique (¾ pouces -PRV)

Fonctionnement:

La pression amont [P1] applique des forces hydrauliques d'ouverture et de fermeture équilibrées sous la membrane [1] et au-dessus du piston [2]. La pression aval [P2] applique une force hydraulique de fermeture sous le piston, qui cherche à atteindre l'équilibre avec la force du ressort de réglage [3]. Si [P2] dépasse la valeur de réglage, les forces hydrauliques de fermeture dépassent la force mécanique du ressort, poussant le piston à se fermer progressivement et ramenant [P2] à la valeur de réglage.

1_DDV

Données techniques

Pression nominale:

10 bar

Plage de pression de fonctionnement:

0.7-9 bar

Température:

Water up to 60°C

Plage de Débit:

0.5-6 m³/h (1"-PRV)

Matériaux

Corps et couvercle:

Polyamide 6 & 30% GF

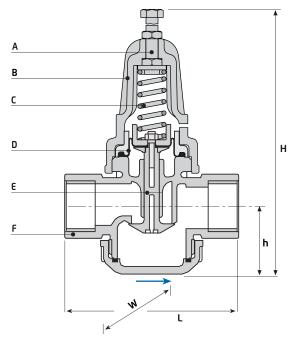
Membrane:

NR, tissu en nylon renforcé

Ressort:

Acier inoxydable

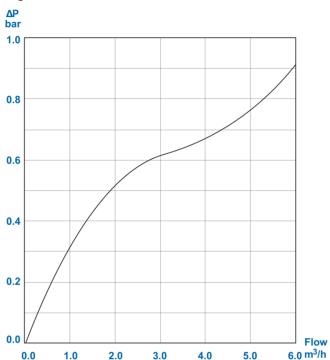
Tableau de sélection des ressorts de réglage:


Ressort	Couleur du ressort	Plage de réglage
Α		0.5-0.9 bar
В		1-1.5 bar
С		1.6-2.4 bar
D		2.5-3.7 bar
Q		3.8-5.2 bar

Données techniques

Pour d'autres modèles et types de raccordement, se référer à la page d'ingénierie complète de <u>BERMAD</u>.

Taille (DN)	Modèle	Raccordement entrée/sortie	Poids (Kg)	L (mm)	H (mm)	h (mm)	W	KV
1" ; 25	1"-PRV	Taraudée	0.36	114	160	45	65	8.8


Entrée et sortie filetées : BSP femelle ; NPT femelle

1-PRV Coupe transversale

Pièce	Description
Α	Vis de réglage
В	Couverture
С	Ressort de réglage
D	Diaphragme roulant
E	Assemblage de l'actionneur
F	Corps

Plage de débit

Pour calculer la pression d'alimentation minimale requise, ajoutez le ΔP dans la Plage de débit vers la valeur de consigne PRV souhaitée.

Calcul de la pression différentielle et du débit

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

www.bermad.com

Les informations contenues dans ce document peuvent etre modifiees par BERMAD sans preavis. BERMAD ne peut etre tenu responsable des erreurs eventuelles.

November 2025