

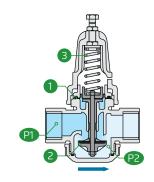
ADJUSTABLE DIRECT-ACTING, LOW FLOW PRESSURE REDUCER

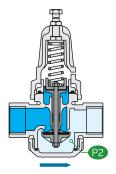
Model 1-PRV-05

The BERMAD Adjustable Direct Acting Low Flow Pressure Reducer is actuated by a pressure responsive diaphragm, which seeks to reach equilibrium between hydraulic and set spring force. The BERMAD Model 1"-PRV-05 is built of composite materials that endows it with excellent hydraulic performance capabilities and high mechanical strength. Supplied with a special throttling plug and elastomeric seal, it reduces higher upstream pressure to lower constant downstream pressure even under conditions of near zero demand.

- [1] BERMAD Model 1"-PRV-05 protects laterals and fittings from excessive pressure and ensures dripper flow per design.
- [2] GreenApp Controlled Valve Model IR-21T
- [3] Automatic Air Valves Model IR-A10

Features & Benefits


- Advanced Construction Materials
 - High mechanical strength
 - Proven pressure, flow and weather resistance
- Adjustable Direct Acting Pressure Reducer
 - Constant downstream pressure
 - Immediate response
 - Adjustable according to season and stage
- Composite Body and Trim
 - Highly durable, chemical and cavitation resistant
 - Minimizes friction
- Unitized Rolling Diaphragm and Guided Plug
 - Accurate and stable regulation
 - Prevents diaphragm distortion
- User-Friendly Design
 - Can be installed at any orientation
 - Simple in-line inspection and service


Typical Applications

- Distribution Line Lateral Risers
- Non-Compensating Drip-Line Flow Fixation
- Lateral Final Burst Protection
- Pressure Reduction for Marginal Plots
- Irrigation Machine Sprinkler Flow Control
- Single Sprinkler Flow Fixation

Operation:

The Upstream Pressure [P1] applies balanced opening and closing hydraulic forces under the Diaphragm [1] and above the Plug [2] Downstream Pressure [P2] applies hydraulic closing force under the plug, which seeks to reach equilibrium with the Set Spring [3] force. Should [P2] rise above setting, the hydraulic closing forces rise above the mechanical force of the spring, pushing the plug to modulate closed, and reducing [P2] back to setting.

Technical Data

Pressure Rating:

145 psi

Operating Pressure Range:

10-130 psi

Temperature:

Water up to 140°F

Flow Range:

0.4-22 gpm (1"-PRV-05)

Materials

Body & Cover:

Polyamide 6 & 30% GF

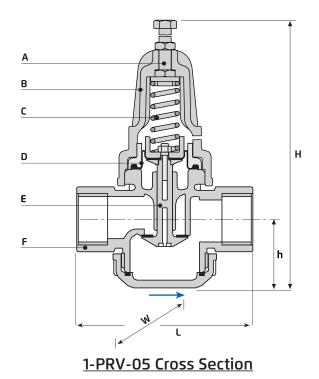
Diaphragm:

NR, Nylon fabric reinforced

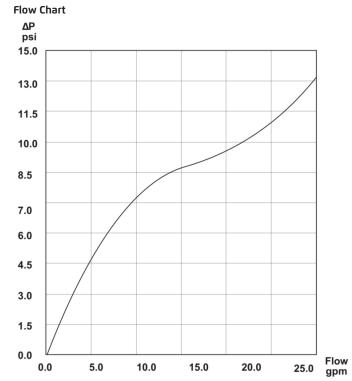
& NBŔ

Spring: Stainless Steel

Setting Springs Selection Table:


Spring	Spring Color	Setting range
Α	Yellow	7-13 psi
В	White	14-22 psi
С	Red	23-35 psi
D	Black	36-54 psi
Q	Brown	55-75 psi

Technical Specifications


For other patterns and end connection types, Please refer to <u>BERMAD</u> full engineering page.

Size (DN)	Model	End Connection	Weight (Lb)	L (In)	H (In)	h (In)	W	cv
1" ; 25	1"-PRV-05 (Low Flow)	Threaded	1.2	41/2	6¼	13/4	21/2	9.2

Inlet & outlet Threaded: Female BSP; Female NPT

Part	Description
Α	Setting Screw
В	Cover
C	Setting Spring
D	Rolling Diaphragm
E	Actuator Assembly
F	Body

To calculate the minimum required supply pressure, add the ΔP in the Flow Chart to PRV desired set point.

Differential Pressure & Flow Calculation

$$\Delta P = \left(\frac{Q}{Cv}\right)^2$$
 $Cv = gpm @ \Delta P \text{ of 1 psi}$
 $Q = gpm$
 $\Delta P = psi$

www.bermad.com