

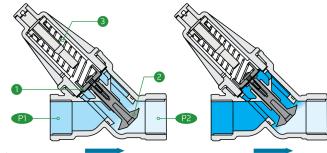
REGULADOR DE PRESIÓN AJUSTABLE DE ACCIÓN DIRECTA

Modelo 0.75-PRV

El Reductor de Presión de Acción Directa Ajustable BERMAD es accionado por un diafragma sensible a la presión, que busca alcanzar el equilibrio entre la fuerza hidráulica y la fuerza del resorte ajustado. Reduce una presión aguas arriba más alta a una presión aguas abajo constante y más baja.

- [1] El modelo ¾"-PRV de BERMAD protege las tuberías laterales y compensa la fricción de la línea, asegurando el caudal de los goteros según el diseño.
- [2] Válvula Controlada por Solenoide Modelo IR-21T
- [3] Modelo Mitigador de Vacío IR-ARV
- [4] Ventosa combinada IR-C10

Características y ventajas


- Materiales de construcción avanzados
 - Alta resistencia mecánica
 - Resistencia comprobada a la presión, el flujo y la intemperie
- Reductor de presión de acción directa ajustable
 - Presión constante aguas abajo
 - Respuesta inmediata
 - Ajustable según la estación y la etapa
- Cuerpo y moldura compuestos
 - Altamente duradera y resistente a las sustancias químicas y los daños por cavitación
 - Minimiza la fricción
- Diafragma rodante unificado y tapón guiado
 - Regulación precisa y estable
 - Evita la distorsión del diafragma
- Diseño de facil manejo
 - Se puede instalar en cualquier orientación
 - Inspección y mantenimiento sencillos en línea

Aplicaciones típicas

- Elevadores de laterales en la línea de distribución
- Fijación de Caudal en Línea de Goteo no auto compensado
- Protección antirroturas al final del lateral
- Reducción de presión para parcelas marginales
- Control de Caudal del Aspersor para Máquinas de Riego
- Fijación de Caudal de un unico aspersor

Operación:

La presión aguas arriba [P1] aplica fuerzas hidráulicas equilibradas de apertura y cierre bajo el diafragma [1] y sobre el cierre [2]. La presión aguas abajo [P2] aplica una fuerza hidráulica de cierre bajo el cierre, que busca alcanzar el equilibrio con la fuerza del resorte de ajuste [3]. Si [P2] supera el valor de ajuste, las fuerzas hidráulicas de cierre superan la fuerza mecánica del resorte, empujando el cierre para modular el cierre y reduciendo [P2] nuevamente al valor de ajuste.

0.75-PRV

Datos técnicos

Presión nominal:

10 bar

Presiones de trabajo:

0.7-9 bar

Temperatura:

Water up to 60°C

Rango de Caudal: 0.8-5 m³/h (¾"-PRV)

Materiales

Cuerpo y tapa:

Poliamida 6 y 30% GF

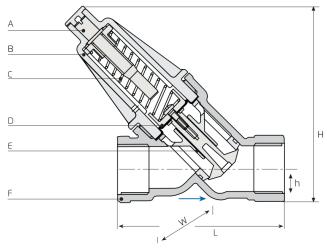
Diafragma:

NR, Nylon reforzado

Resorte (muelle):

Acero inoxidable

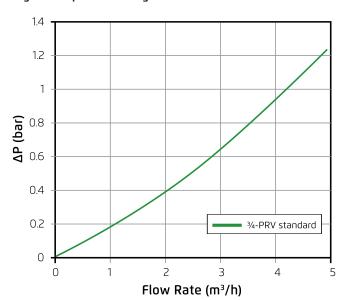
Tabla de selección de resortes:


Resorte (muelle)	Color del resorte	rango de ajuste
В		0.8-2.5 bar
С		2-4 bar

Especificaciones técnicas

Consulte la página completa de ingeniería de <u>BERMAD</u> acerca de otras formas y tipos de conectores.

Tamaño (DN)	Modelo	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	KV
3/4" ; 20	3/4"-PRV	Rosca	0.13	88	100	17	45	4.0


[•] Rosca de entrada: BSP hembra; NPT • Rosca de salida: BSP hembra; NPT o BSPT macho; NPT

0.75-PRV Sección transversal

Pieza	Descripción	
Α	Tornillo de ajuste	
В	Тара	
С	Resorte de ajuste	
D	Diafragma rodante	
E	Conjunto de actuadores	
F	Cuerpo	

Diagrama de pérdida de carga

P1 mínimo = configuración de la P2 + ΔP en el diagrama de flujo * Para flujos inferiores a 0,2 m³/h, utilice el modelo LF PRV-05.

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h \otimes \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = \text{bar}$$

www.bermad.com