

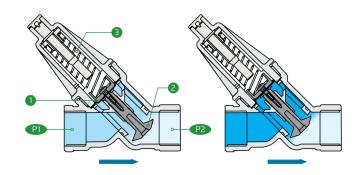
ADJUSTABLE DIRECT-ACTING PRESSURE REDUCER

Model 0.75-PRV

The BERMAD Adjustable Direct Acting Pressure Reducer is actuated by a pressure responsive diaphragm, which seeks to reach equilibrium between hydraulic and set spring force. It reduces higher upstream pressure to lower constant downstream pressure.

- [1] BERMAD Model ¾"-PRV protects laterals and compensates for line friction, ensuring dripper flow per design.
- [2] Solenoid Controlled Valve Model IR-21T
- [3] Vacuum Breaker Model IR-ARV
- [4] Combination Air Valve IR-C10

Features & Benefits


- Advanced Construction Materials
 - High mechanical strength
 - Proven pressure, flow and weather resistance
- Adjustable Direct Acting Pressure Reducer
 - Constant downstream pressure
 - Immediate response
 - Adjustable according to season and stage
- Composite Body and Trim
 - Highly durable, chemical and cavitation resistant
 - Minimizes friction
- Unitized Rolling Diaphragm and Guided Plug
 - Accurate and stable regulation
 - Prevents diaphragm distortion
- User-Friendly Design
 - Can be installed at any orientation
 - Simple in-line inspection and service

Typical Applications

- Distribution Line Lateral Risers
- Non-Compensating Drip-Line Flow Fixation
- Lateral Final Burst Protection
- Pressure Reduction for Marginal Plots
- Irrigation Machine Sprinkler Flow Control
- Single Sprinkler Flow Fixation

Operation:

The Upstream Pressure [P1] applies balanced opening and closing hydraulic forces under the Diaphragm [1] and above the Plug [2] The Downstream Pressure [P2] applies hydraulic closing force under the plug, which seeks to reach equilibrium with the Set Spring [3] force. Should [P2] rise above setting, the hydraulic closing forces rise above the mechanical force of the spring, pushing the plug to modulate closed, and reducing [P2] back to setting.

Pressure Reducing

Technical Data

Pressure Rating:

10 bar

Operating Pressure Range:

0.7-9 bar

Temperature:

Water up to 60°C

Flow Range:

0.8-5 m³/h (¾"-PRV)

Materials

Body & Cover:

Polyamide 6 & 30% GF

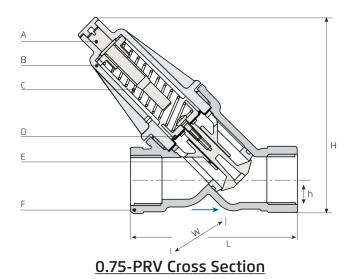
Diaphragm:

NR, Nylon fabric reinforced & NBR

Spring:

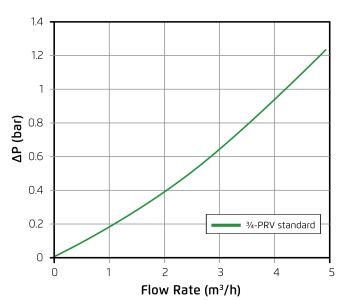
Stainless Steel

Setting Springs Selection Table:


Spring	Spring Color	Setting range
В	White	0.8-2.5 bar
С	Red	2-4 bar

Technical Specifications

For other patterns and end connection types, Please refer to **BERMAD** full engineering page.


Size (DN)	Model	End Connection	Weight (Kg)	L (mm)	H (mm)	h (mm)	W	KV
3/4" ; 20	3/4"-PRV	Threaded	0.13	88	100	17	45	4.0

• Inlet Threaded: Female BSP; NPT •Outlet Theaded: Female BSP; NPT or Male BSPT; NPT

Part	Description
Α	Setting Screw
В	Cover
С	Setting Spring
D	Rolling Diaphragm
E	Actuator Assembly
F	Body

Flow Chart

P1 Minimum = P2 Setting + ΔP in Flow Chart * For flow lower than 0.2 m³/h, use LF Model PRV-05

Differential Pressure & Flow Calculation

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h @ \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

