

RIDUTTORE DI PRESSIONE A BASSA PORTATA REGOLABILE AD **AZIONE DIRETTA**

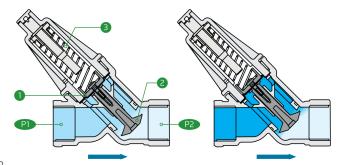
Modello 0.75-PRV-05

Il Riduttore di Pressione a Azione Diretta Regolabile BERMAD è azionato da un diaframma sensibile alla pressione, che cerca di raggiungere l'equilibrio tra la forza idraulica e quella della molla impostata. Riduce la pressione a monte più elevata a una pressione a valle costante e inferiore. La versione a basso flusso modello IR-3/4" PRV-05 offre una soluzione superiore in condizioni di richiesta quasi nulla.

[1] Il modello BERMAD ¾"-PRV-05 protegge le linee laterali e compensa l'attrito della tubazione, garantendo la portata dei gocciolatori secondo il progetto.

- [2] Valvola controllata da solenoide Modello IR-21T
- [3] Modello di valvola rompivuoto IR-ARV
- [4] Valvola dell'Aria Combinata IR-C10

Caratteristiche e vantaggi


- Materiali da costruzione avanzati
 - Elevata resistenza meccanica
 - Comprovata resistenza alla pressione, al flusso e agli agenti atmosferici
- Riduttore di Pressione ad azione diretta regolabile
 - Pressione costante a valle
 - Risposta immediata
 - Impostabile in base alla stagione e alla fase
- Corpo e rivestimento in Composito
 - Altamente durevole, resistente agli agenti chimici e alla cavitazione
 - Riduce al minimo l'attrito
- Diaframma rotante unificato e spina quidata
 - Regolazione precisa e stabile
 - Previene la distorsione del diaframma
- - Può essere installato con qualsiasi orientamento
 - Ispezione e assistenza in linea semplici

Applicazioni tipiche

- Linea di distribuzione Lateral Risers
- Fissaggio del Flusso in Linea di Gocciolamento non compensante
- Protezione laterale contro lo scoppio finale
- Riduzione della pressione per lotti marginali

Operazioni:

La Pressione a Monte [P1] applica forze idrauliche bilanciate di apertura e chiusura sotto il Diaframma [1] e sopra il Tappo [2]. La Pressione a Valle P2 applica una forza idraulica di chiusura sotto il tappo, che cerca di raggiungere l'equilibrio con la forza della Molla di Regolazione [3]. Se [P2] supera il valore impostato, le forze idrauliche di chiusura superano la forza meccanica della molla, spingendo il tappo a modulare la chiusura e riportando [P2] al valore impostato.

Dati Tecnici

Pressione d'esercizio:

10 bar

Intervallo di Pressione Operativa:

0.7-9 bar

Temperatura:

Water up to 60°C

Intervallo di Flusso:

0.01-3 m³/h (¾"-PRV)

Materiali

Corpo e Coperchio:

Poliammide 6 e 30% VF

Diaframma:

NR, Tessuto in nylon rinforzato

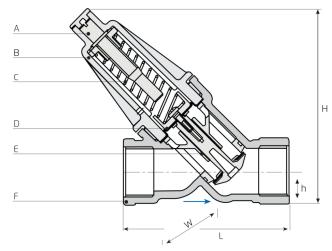
Molla:

Acciaio Inox

Impostazione della tabella di selezione delle molle:

Molla	Colore Molla	Range di Regolazione		
В		0.8-2.5 bar		
С		2-4 bar		

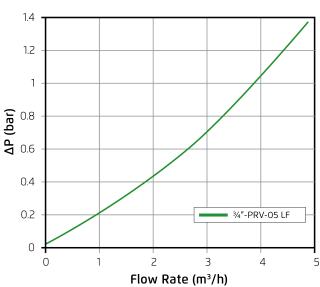
Specifiche Tecniche


Per altri modelli e tipi di connessioni terminali,

Consultare la pagina di progettazione completa di BERMAD.

Diametro	Modello	Connessione	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	KV
3/4"; 20	34"-PRV-05 (Low Flow)	Filettato	0.13	88	100	17	45	3.6

[•] Ingresso filettato: BSP femmina; NPT • Uscita filettata: BSP femmina; NPT o BSPT maschio; NPT


x000D

0.75-PRV-05 Sezione trasversale

Parte	Descrizione
Α	Vite di regolazione
В	Coperchio
С	Molla di regolazione
D	Diaframma rotante
Е	Gruppo attuatore
F	Corpo

diagramma di flusso

P1 Minimo = Impostazione P2 + ΔP nel diagramma di flusso * Per un flusso inferiore a 0,2 m³/h, utilizzare il Modello LF

Differenziale di Pressione e Calcolo della Portata

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h @ \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

