

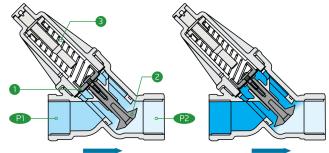
RÉDUCTEUR DE PRESSION À ACTION DIRECTE, À FAIBLE DÉBIT, RÉGLABLE

Modèle 0.75-PRV-05

Le réducteur de pression à action directe réglable BERMAD est actionné par une membrane sensible à la pression, qui cherche à atteindre l'équilibre entre la force hydraulique et celle du ressort de réglage. Il réduit une pression amont élevée à une pression aval constante et plus basse. Le modèle à faible débit IR-3/4" PRV-05 offre une solution optimale dans des conditions de demande quasi nulle.

- [1] Le modèle BERMAD ¾"-PRV-05 protège les latéraux et compense les pertes de charge dans la conduite, garantissant un débit des goutteurs conforme à la conception.
- [2] Vanne à commande par solénoïde modèle IR-21T
- [3] Brise-vide modèle IR-ARV
- [4] Ventouse combinée IR-C10

Caractéristiques et avantages


- Matériaux de construction avancés
 - Haute résistance mécanique
 - Résistance éprouvée à la pression, au débit et aux intempéries
- Réducteur de pression réglable à action directe
 - Pression aval constante
 - Réponse immédiate
 - Réglable en fonction de la saison et de l'étape
- Corps et garniture en composite
 - Très durable, résistant aux produits chimiques et à la cavitation
 - Minimise la friction
- Diaphragme roulant unitisé et bouchon quidé
 - Régulation précise et stable
 - Empêche la déformation du diaphragme
- Conception facile d'utilisation
 - Peut être installé dans n'importe quelle orientation
 - Inspection et entretien simples en ligne

Applications types

- Elévateurs latéraux pour lignes de distribution
- Fixation non compensatrice du débit de la conduite d'égouttement
- Protection latérale contre les éclats finaux
- Réduction de la pression pour les parcelles marginales

Fonctionnement:

La pression amont [P1] applique des forces hydrauliques d'ouverture et de fermeture équilibrées sous la membrane [1] et au-dessus du piston [2]. La pression aval [P2] applique une force hydraulique de fermeture sous le piston, qui cherche à atteindre l'équilibre avec la force du ressort de réglage [3]. Si [P2] dépasse la valeur de réglage, les forces hydrauliques de fermeture dépassent la force mécanique du ressort, poussant le piston à se fermer progressivement et ramenant [P2] à la valeur de réglage.

0.75-PRV-05

Données techniques

Pression nominale:

10 bar

Plage de pression de fonctionnement:

0.7-9 bar

Température:

Water up to 60°C

Plage de Débit:

0.01-3 m³/h (¾"-PRV)

Matériaux

Corps et couvercle:

Polyamide 6 & 30% GF

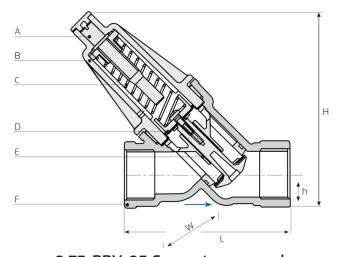
Membrane:

NR, tissu en nylon renforcé

Ressort:

Acier inoxydable

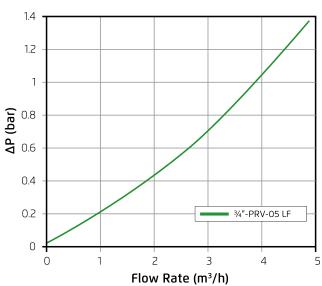
Tableau de sélection des ressorts de réglage:


Ressort	Couleur du ressort	Plage de réglage
В		0.8-2.5 bar
С		2-4 bar

Données techniques

Pour d'autres modèles et types de raccordement, se référer à la page d'ingénierie complète de <u>BERMAD</u>.

Taille (DN)	Modèle	Raccordement entrée/sortie	Poids (Kg)	L (mm)	H (mm)	h (mm)	W	KV
3/4" ; 20	34"-PRV-05 (Low Flow)	Taraudée	0.13	88	100	17	45	3.6


[•] Entrée filetée : BSP femelle ; NPT • Sortie filetée : BSP femelle ; NPT ou BSPT mâle ; NPT

0.75-PRV-05 Coupe transversale

Pièce	Description	
Α	Vis de réglage	
В	Couverture	
C	Ressort de réglage	
D	Diaphragme roulant	
E	Assemblage de l'actionneur	
F	Corps	

Plage de débit

P1 minimum = Réglage P2 + ΔP dans la plage de débit * Pour un débit inférieur à 0,2 m³/h, utiliser le modèle LF PRV-05

Calcul de la pression différentielle et du débit

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h @ \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

www.bermad.com

Les informations contenues dans ce document peuvent etre modifiees par BERMAD sans preavis. BERMAD ne peut etre tenu responsable des erreurs eventuelles.

November 2025