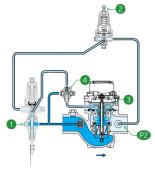
HIDRÓMETRO DE CONTROL DE CAUDAL Y REDUCTOR DE PRESIÓN **

Model IR-972-M0-2W-KVZ

El hidrómetro de control de caudal y reductor de presión BERMAD con selector manual combina un medidor de caudal de turbina tipo Woltman con una válvula de control hidráulica, accionada por diafragma. Funcionando tanto como medidor de caudal principal como válvula de control de caudal y reducción de presión, limita la demanda excesiva y reduce la presión aguas arriba más alta a una presión máxima aguas abajo preestablecida. El hidrómetro cuenta con un registro sellado al vacío y acoplado magnéticamente para una medición precisa del volumen acumulado. Se encuentra disponible una salida de pulsos opcional para mejorar aún más las capacidades del sistema.

Características y ventajas


- Válvula de control y caudalimetro integrado "todo en uno"
 Ahorra espacio, costes y mantenimiento
- Accionada por la presión en la línea, operación hidráulica
- Limita el índice de llenado y la demanda excesiva de los consumidores
 - Protege los sistemas aguas abajo
- Transmision magnética con registro sellado al vacío
 - Mecanismo de tren de engranajes seco
 - Salida de pulsos libre de tensión con interruptor de lengüeta
 - Diversas combinaciones de pulsos
- Dispositivo de calibración de medición de caudal integrado
 - Medición precisa
- Piloto de Control de Caudal Hidromecánico tipo paleta
 - Pérdida de carga insignificante
 - Amplio rango de ajuste
- Inspección y mantenimiento sencillos en línea

Aplicaciones típicas

- Sistemas de riego automatizados
- Sistemas reductores de presión
- Lectura remota de datos de flujo
- Monitorización de flujo y control de fugas
- Soluciones de control de llenado de líneas
- Múltiples sistemas independientes para consumidores

Operación:

El Piloto Limitador de Caudal tipo paleta (FCP) (1) conecta hidráulicamente el Piloto Reductor (PRP) (2) con la Cámara de Control del Hidrómetro (3) a través del selector manual (4). En modo AUTO, se habilita la regulación y el FCP ordena al Hidrómetro estrangular el cierre si la demanda supera el ajuste o modular la apertura cuando disminuye. La presión aguas abajo (P2) es regulada por el PRP, ordenando al Hidrómetro reducir la presión excesiva aguas arriba hasta un valor constante de presión aguas abajo preestablecido. Cuando el selector manual se coloca en CERRADO, el Hidrómetro se cierra.

Serie 900 Control de caudal

Tuberías y conectores:

Polietileno

Datos técnicos

Presión nominal:

10 bar

Presiones de trabajo:

0.5-10 bar

Materiales

Cuerpo y tapa: Hierro dúctil Diafragma: NR, Nylon reforzado

Juntas: NR, Nylon reforzado Resorte (muelle): Acero

inoxidable

Internas: Acero inoxidable y nylon reforzado con plástico Acelerador: Polipropileno Pivotes y rodamientos:

Polipropileno

*Otros materiales están disponibles a

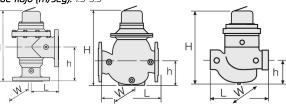
pedido

Especificaciones técnicas

Consulte la página completa de ingeniería de <u>BERMAD</u> acerca de otras formas y tipos de conectores.

Accesorios del circuito de control

Piloto Reductor: PC-20-A-P


Resorte (muelle)	Color del resorte	rango de ajuste				
K	Gris	0.5-3.0 bar				
N	Natural	0.8-6.5 bar				
V	Azul y blanco	1.0-10.0 bar				
Resorte estándar - marcado en negrita						

Piloto Limitador: PC-70-P

Gama de resortes del piloto de fluio:

Resorte: E-Purple

Velocidad de flujo (m/seg): 1.5-3.5

Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Globo	Rosca	7.2	250	270	95	143	0.16	41
2" ; DN50	Globo	Rosca	7.3	250	277	95	143	0.16	46
2" ; DN50	Angular	Rosca	8.1	120	353	155	143	0.16	51
3"R; DN80R	Globo	Rosca	7.3	250	277	79	143	0.16	50
3"R; DN80R	Globo	Embridada	16	310	298	100	200	0.16	50
3"; DN80	Globo	Embridada	23	300	382	123	210	0.49	115
3"; DN80	Angular	Embridada	25.8	150	402	196	210	0.49	126
4"; DN100	Globo	Embridada	31	350	447	137	250	1	147
4"; DN100	Angular	Embridada	36.1	180	481	225	250	1	180

VDCC = Volumen de descarga (desplazamiento) en la cámara de control • Rosca = BSP y estándar americano NPT disponibles.

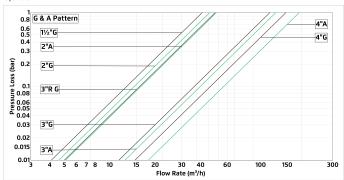
Propiedades de flujo

Tamaño Q @ (m³/h)	Precisión	DN40 1½"	DN50 2"	DN80R 3"R	DN80 3"	DN100 4"
Q1 Caudal mínimo	±5%	0.8	0.8	1.2	1.2	1.8
Q2 Caudal de transición	±2%	1.3	1.3	3	3	4.5
Q3 Caudal Permanente	±2%	25	40	100	100	160
Q4 Caudal máximo (tiempo corto)	±2%	31	50	125	125	200

^{*}ISO 4604

Opciones de pulso

Tipo de registro	Sens	Sensor REED - Simple Sensor REED - combinate					do Electrónico			
Tamaño	Un pulso por		Un pul	Un pulso por						
Tamana	10L	100L	1m³	10m³	10L+100L	1m³+10m³	10L	100L	1m³	10m³
1½"-4"; DN40-100		✓	✓		✓		✓	✓	✓	


- Pulso de 10 L (solo disponible con registro electrónico) adecuado para caudales de hasta 180 m³/h.
- Se transmiten dos pulsos paralelos. Otras frecuencias de pulso están disponibles bajo petición.

Características adicionales

Código	Descripción
ME	Registro electrónico (kit de actualización disponible)

Diagrama de pérdida de carga

Circuito de 2 vías "Pérdida de carga añadida" (para "V" por debajo de 2 m/s): 0.3 bar

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h @ \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

www.bermad.com