

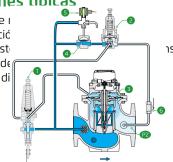
HIDRÓMETRO DE CONTROL DE CAUDAL Y REDUCTOR DE PRESIÓN

Transmisión magnética con registro magnético (M0), circuito de control y accesorios metálicos (R), 2

Model IR-972-M0-55-2W-RV

El hidrómetro de control de caudal y reductor de presión BERMAD con control por solenoide combina un medidor de caudal de turbina tipo Woltman con una válvula de control hidráulica, accionada por diafragma. Funcionando tanto como medidor de caudal en línea principal y como válvula de control de caudal y reducción de presión, limita la demanda excesiva y reduce la presión aguas arriba más alta a una presión máxima aguas abajo preestablecida. Cuenta con un registro sellado al vacío para una medición precisa del volumen. Se encuentra disponible una salida de pulsos opcional para mejorar aún más las capacidades del sistema.

- [1] Hidrómetro BERMAD modelo IR-900-M0-Z
- [2] Combination Air Valve Model IR-C10
- [3] RTU- unidad terminal remota
- 4 P வெள்ளி BERMAD modelo IR-900-M0-Z


El Piloto Limitador de Caudal tipo Paleta (FCP) (1) conecta hidráulicamente el Piloto Reductor de Presión (PRP) (2) con la Cámara de Control del Hidrómetro (3) a través de un Relé Hidráulico (2W-HRV) (4) controlado por un Solenoide de 3 vías (5). Al activar el Solenoide se inicia la regulación: el FCP estrangula el Hidrómetro cerrándolo si la demanda supera el punto de ajuste o lo modula abriéndolo cuando la demanda disminuye. El PRP limita la presión aguas abajo (P2) a un máximo preestablecido. Cuando el Solenoide se desactiva o al cerrar la válvula de bola aguas abajo (6), el Hidrómetro se cierra. La apertura total por mando manual del Solenoide permite la operación manual.

Características y ventajas

- Válvula de control y caudalimetro integrado "todo en uno"
 - Ahorra espacio, costes y mantenimiento
- Control hidráulico de caudal y presión con control por solenoide
 - Limita el índice de llenado y la demanda excesiva de los consumidores
 - Protege los sistemas aguas abajo
- Transmision magnética con registro sellado al vacío
 - Mecanismo de tren de engranajes seco
 - Salida de pulsos libre de tensión con interruptor de lengüeta
 - Diversas combinaciones de pulsos
- Enderezadores Internos de flujo de Entrada y de Salida
 - Ahorra distancias de enderezamiento
 - Mantiene la precisión
- Dispositivo de calibración de medición de caudal integrado
 - Medición precisa
- Piloto de Control de Caudal Hidromecánico tipo paleta
 - Pérdida de carga insignificante
 - Configuración sencilla del límite de flujo
 - Amplio rango de ajuste

Aplicaciones típicas

- Sistemas de ı
- Monitorizacić
- Múltiples siste
- Estaciones de
- Centros de di

rsumidores

Datos técnicos

Presión nominal:

16 bar

Presiones de trabajo:

0.5-16 bar

Materiales

Cuerpo y tapa: Hierro dúctil Diafragma: NR, Nylon reforzado Juntas: NR, Nylon reforzado

Resorte (muelle): Acero

inoxidable

Internas: Acero inoxidable y nylon reforzado con plástico Acelerador: Polipropileno Pivotes y rodamientos:

Polipropileno

*Otros materiales están disponibles a pedido

Especificaciones técnicas

Consulte la página completa de ingeniería de **BERMAD** acerca de otras formas y tipos de conectores.

Accesorios del circuito de control

Piloto Reductor: PC-20-A-MP

Resorte (muelle)	Color del resorte	rango de ajuste
N	Natural	0.8-6.5 bar
V	Azul y blanco	1.0-10.0 bar

Resorte estándar - marcado en negrita Piloto Limitador: PC-70-MP

Control de flujo y gama de resortes de pilotos:

Resorte: E-Purple Velocidad de flujo (m/seg): 1.5-3.5

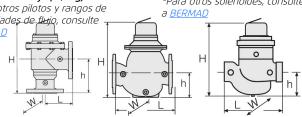
*Para otros pilotos y rangos de velocidades de flujo, consulte <u>BERMAD</u>

Tuberías y conectores:

Plástico reforzado y latón

Solenoide AC (CA): S-400-3W-24VAC-R

Solenoide DC (CC): S-400-3W-24 V DC


Solenoide de pulso (Latch):

S-402-3W-M.B.-9-40 V DC

latch

S-985-3W-M.B.-12-50 V DC

*Para otros solenoides, consulte

Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Globo	Rosca	7.2	250	270	95	143	0.16	41
2" ; DN50	Globo	Rosca	7.3	250	277	95	143	0.16	46
2" ; DN50	Angular	Rosca	8.1	120	353	155	143	0.16	51
3"R ; DN80R	Globo	Rosca	7.3	250	277	79	143	0.16	50
3"R ; DN80R	Globo	Embridada	16	310	298	100	200	0.16	50
3"; DN80	Globo	Embridada	23	300	382	123	210	0.49	115
3"; DN80	Angular	Embridada	25.8	150	402	196	210	0.49	126
4"; DN100	Globo	Embridada	31	350	447	137	250	1	147
4"; DN100	Angular	Embridada	36.1	180	481	225	250	1	180
6"; DN150	Globo	Embridada	71	500	602	216	380	3.8	430
6" ; DN150	Angular	Embridada	76.7	250	585	306	380	3.8	473
8"; DN200	Globo	Embridada	93	600	617	228	380	3.8	550
8"; DN200	Angular	Embridada	82.5	250	585	280	380	3.8	605

VDCC = Volumen de descarga (desplazamiento) en la cámara de control • Rosca = BSP y estándar americano NPT disponibles.

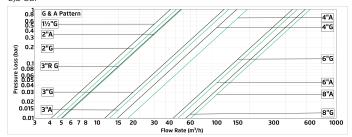
Propiedades de flujo

Tamaño Q @ (m³/h)	Precisión	DN40 1½"	DN50 2"	DN80R 3"R	DN80 3"	DN100 4"	DN150 6"	DN200 8"
Q1 Caudal mínimo	±5%	0.8	0.8	1.2	1.2	1.8	4	6.3
Q2 Caudal de transición	±2%	1.3	1.3	3	3	4.5	10	15.8
Q3 Caudal Permanente	±2%	25	40	100	100	160	250	400
Q4 Caudal máximo (tiempo corto)	±2%	31	50	125	125	200	313	500

^{*150 4604}

Opciones de pulso

Tipo de registro	Sens	Sensor REED - Simple Sensor REED - combinad						Electr	ónico	
Tamaño	Un pulso por			r	Un pul	Un pulso por				
10110110	10L	100L	1m³	10m³	10L+100L	1m³+10m³	10L	100L	1m³	10m³
1½"-4" ; DN40-100		✓	✓		✓		✓	✓	✓	
6"-10"; DN150-250			✓	V		✓		✓	✓	V


- Pulso de 10 L (solo disponible con registro electrónico) adecuado para caudales de hasta 180 m^3/h .
- Se transmiten dos pulsos paralelos. Otras frecuencias de pulso están disponibles bajo petición.

Características adicionales

Código	Descripción				
Z	Selector manual				
ME	Registro electrónico (kit de actualización disponible)				

Diagrama de pérdida de carga

Circuito de 2 vías "Pérdida de carga añadida" (para "V" por debajo de 2 m/s): 0,3 bar

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h @ \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = \text{bar}$$

www.bermad.com