

# FLOW CONTROL & PRESSURE REDUCING HYDROMETER

## Model IR-972-M0-55-2W-RV

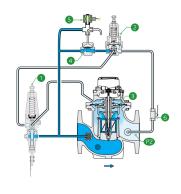
The BERMAD flow control and pressure reducing Hydrometer with solenoid control combines a Woltman-type water meter with a hydraulically operated, diaphragm-actuated control valve. Functioning as both a mainline flow meter and a flow control & pressure reducing valve, it limits excessive demand and reduces higher upstream pressure to a preset maximum downstream pressure. It features a vacuum-sealed register for precise volume measurement. An optional pulse output is available to further enhance system capabilities.





- [1] BERMAD Model IR-972-M0-55-2W-RV opens in response to an electric command, limiting excessive demand, and establishing reduced pressure zones.
- [2] Kinetic Air Valve Model IR-K10
- [3] Combination Air Valve Model IR-C10
- [4] Smart Irrigation Controller-OMEGA
- [5] Strainer Model 70-F

## Features & Benefits


- Integrated "All-in-One" Control Valve & Flow Meter
  - Saves space, cost and maintenance
- Hydraulic Flow & Pressure Control with Solenoid Control
  - Limits fill-up rate and consumer excessive demand
  - Protects downstream systems
- Magnetic Drive with Vacuum-Sealed Register
  - Water-free gear train mechanism
  - Reed-switch tension free pulse output
  - Various pulse combinations
- Internal Inlet & Outlet Flow Straighteners
  - Saves on straightening distances
  - Maintains accuracy
- Integrated Flow Metering Calibration Device
  - Precise measurement
- Paddle-Type Hydro-Mechanical Flow Pilot
  - Negligible head loss
  - Easy flow limit setting
  - Wide setting range

#### Typical Applications

- Automated Irrigation Systems
- Flow Monitoring & Leakage Control
- Multiple Independent Consumer Systems
- Pressure Reducing Stations
- Distribution Centers

## Operation:

The Paddle-Type Flow Control Pilot (FCP) 11 hydraulically connects the Pressure Reducing Pilot (PRP) 2 to the Hydrometer's Control Chamber 3 via a Hydraulic Relay (2W-HRV) 4, controlled by a 3W Solenoid [5]. Activating the Solenoid initiates regulation: the FCP throttles the Hydrometer closed if demand exceeds the setpoint or to modulate-open when demand drops. The PRP limits downstream pressure (P2) to a preset max. When the Solenoid is Deactivated or by closing the downstream cock valve [6], the Hydrometer shuts. Solenoid's Manual Override enables manual operation.



#### Technical Data

Pressure Rating:

16 bar

Operating Pressure Range:

0.5-16 bar

**Materials** 

Body & Cover: Ductile Iron Diaphragm: NR, Nylon fabric

reinforced

Seals: NR, Nylon fabric reinforced

Spring: Stainless Steel

Internals: Stainless Steel & Plastic

Reinforced Nylon Impeller: Polypropylene Pivots and Bearings:

Polypropylene

\*Other materials are available on

request

## **Technical Specifications**

For other patterns and end connection types, Please refer to **BERMAD** full engineering page.

## **Control Loop Accessories**

PR Pilot: PC-20-A-MP

| Spring | Spring Color | Setting<br>range |
|--------|--------------|------------------|
| N      | Natural      | 0.8-6.5 bar      |
| V      | Blue & White | 1.0-10.0 bar     |

Standard spring - marked in bold

FC Pilot: PC-70-MP

Flow Control Pilot spring range:

Spring: E-Purple

Flow Velocity (m/sec): 1.5-3.5 \*For other pilots and flow velocities range, please consult **BERMAD** 

**Tubing and Fittings:** 

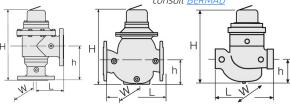
Reinforced Nylon and Brass

AC solenoid:

S-400-3W-24VAC-R

DC solenoid:

S-400-3W-24 V DC


DC latch solenoid:

S-402-3W-M.B.-9-40 V DC

latch

S-985-3W-M.B.-12-50 V DC

\*For other solenoids please consult **BERMAD** 



| Size       | Pattern   | End Connection | Weight (Kg) | L (mm) | H (mm) | h (mm) | W   | CCDV (Lit) | KV  |
|------------|-----------|----------------|-------------|--------|--------|--------|-----|------------|-----|
| 1½" ; DN40 | Globe     | Threaded       | 7.2         | 250    | 270    | 95     | 143 | 0.16       | 41  |
| 2" ; DN50  | Globe     | Threaded       | 7.3         | 250    | 277    | 95     | 143 | 0.16       | 46  |
| 2" ; DN50  | Angle 90° | Threaded       | 8.1         | 120    | 353    | 155    | 143 | 0.16       | 51  |
| 3"R; DN80R | Globe     | Threaded       | 7.3         | 250    | 277    | 79     | 143 | 0.16       | 50  |
| 3"R; DN80R | Globe     | Flanged        | 16          | 310    | 298    | 100    | 200 | 0.16       | 50  |
| 3"; DN80   | Globe     | Flanged        | 23          | 300    | 382    | 123    | 210 | 0.49       | 115 |
| 3"; DN80   | Angle 90° | Flanged        | 25.8        | 150    | 402    | 196    | 210 | 0.49       | 126 |
| 4"; DN100  | Globe     | Flanged        | 31          | 350    | 447    | 137    | 250 | 1          | 147 |
| 4"; DN100  | Angle 90° | Flanged        | 36.1        | 180    | 481    | 225    | 250 | 1          | 180 |
| 6" ; DN150 | Globe     | Flanged        | 71          | 500    | 602    | 216    | 380 | 3.8        | 430 |
| 6" ; DN150 | Angle 90° | Flanged        | 76.7        | 250    | 585    | 306    | 380 | 3.8        | 473 |
| 8"; DN200  | Globe     | Flanged        | 93          | 600    | 617    | 228    | 380 | 3.8        | 550 |
| 8"; DN200  | Angle 90° | Flanged        | 82.5        | 250    | 585    | 280    | 380 | 3.8        | 605 |

CCDV = Control Chamber Displacement Volume • Threaded = BSP & NPT are available.

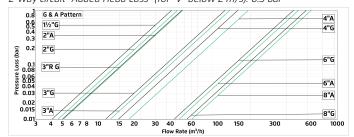
## Flow Properties

| Size                            | Accuracy | DN40  | DN50 | DN80R | DN80 | DN100 | DN150 | DN200 |
|---------------------------------|----------|-------|------|-------|------|-------|-------|-------|
| Q @ (m³/h)                      |          | 11/2" | 2"   | 3"R   | 3"   | 4"    | 6"    | 8"    |
| Q1 Minimum Flow                 | ±5%      | 0.8   | 0.8  | 1.2   | 1.2  | 1.8   | 4     | 6.3   |
| Q2 Transitional Flow            | ±2%      | 1.3   | 1.3  | 3     | 3    | 4.5   | 10    | 15.8  |
| Q3 Permanent Flow               | ±2%      | 25    | 40   | 100   | 100  | 160   | 250   | 400   |
| Q4 Maximum Flow<br>(Short Time) | ±2%      | 31    | 50   | 125   | 125  | 200   | 313   | 500   |

<sup>\*</sup>ISO 4604

#### **Pulse Option**

| Register Type      | Reed Switch - Single |      |        | ingle         | Reed Switch | Electronic |     |          |     |      |
|--------------------|----------------------|------|--------|---------------|-------------|------------|-----|----------|-----|------|
| Size               | One pulse per        |      | One pu | One pulse per |             |            |     |          |     |      |
| 3126               | 10L                  | 100L | 1m³    | 10m³          | 10L+100L    | 1m³+10m³   | 10L | 100L     | 1m³ | 10m³ |
| 1½"-4" ; DN40-100  |                      | ✓    | ✓      |               | ✓           |            | ✓   | <b>√</b> | ✓   |      |
| 6"-10" : DN150-250 |                      |      | 1      | 1             |             | ✓          |     | 1        | 1   | 1    |


- 10L pulse (only available with electronic register) suitable for flows up to 180 m<sup>3</sup>/h.
- Two parllel pulses are transmitted. other pulse rates are avaiable on reauest.

#### **Additional Features**

| Code | Description                                    |  |  |  |  |
|------|------------------------------------------------|--|--|--|--|
| Z    | Manual Selector                                |  |  |  |  |
| ME   | Electronic register (upgrade kit is available) |  |  |  |  |

#### Flow Chart

2-Way circuit "Added Head Loss" (for "V" below 2 m/s): 0.3 bar



#### **Differential Pressure & Flow Calculation**

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h \otimes \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$



<sup>•</sup> Extra length for male Threaded: 11/2" Globe= 67(mm); 2" Globe & Angle= 77(mm)