

IDROMETRO CONTROLLO PORTATA, SERVO

Model IR-970-MF-50-2W-RV7

L'idrometro BERMAD per il controllo del flusso, dotato di comando remoto idraulico e selettore manuale, combina un contatore d'acqua a turbina tipo Woltman con una valvola di controllo azionata idraulicamente e attuata a diaframma. Funzionando sia come misuratore di portata principale che come valvola di controllo del flusso, opera in risposta a un comando di pressione remoto, limitando la richiesta a un valore massimo preimpostato. È dotato di un registro elettronico per una misurazione precisa di volume e portata e di un'uscita a impulsi per applicazioni di monitoraggio e controllo avanzate. L'idrometro può essere chiuso localmente.

[1] Il modello BERMAD IR-970-ME-50-2W-RVZ si apre su comando di caduta di pressione, limitando la velocità di riempimento e la sovradomanda da parte del consumatore.

Operazioni:

Il Pilota di Controllo Portata a Paletta (FCP) 11 si collega idraulicamente alla Camera di Controllo [2] tramite la Valvola Shuttle [3] e il Selettore Manuale [4]. Impostando il Selettore Manuale su AUTO si abilita il Comando Remoto. Quando il Comando Remoto è scaricato, il FCP regola l'idrometro chiudendolo se la richiesta supera il valore di regolazione e modulandolo in apertura se la richiesta diminuisce. In caso di comando di aumento pressione, la Valvola Shuttle commuta, pressurizzando la camera di controllo e chiudendo l'idrometro. Impostando il Selettore Manuale su CHIUSA, si esclude il Comando Remoto e si chiude l'idrometro.

Tutte le immagini in questo catalogo sono solo a scopo illustrativo

Caratteristiche e vantaggi

- Valvola di controllo e Misuratore di Flusso integrati «tutto in uno»
 - Consente di risparmiare spazio, costi e manutenzione
- Accensione/spegnimento azionato dalla pressione di linea, controllato idraulicamente
 - Limita il tasso di rifornimento e la domanda eccessiva da parte dei consumatori
- Unità magnetica con registro elettronico universale BERMAD
 - Supporta unità di misura metriche e imperiali
 - Visualizzazione istantanea della portata
 - Indicazione del flusso diretto e inverso
 - Capacità di registrazione dati
 - _x000D_ Emissione impulsi rapida_x000D_
 - Raddrizzatori di Flusso Interni in Ingresso e Uscita
 - Risparmia sulle distanze di raddrizzamento
 - Precisione costante
 - Pilota di Flusso Idromeccanico a paletta
 - Perdita della testa trascurabile
 - Ampia gamma di impostazioni
 - Design intuitivo
 - Facile impostazione del flusso
 - Ispezione e assistenza in linea semplici

Applicazioni tipiche

- Sistemi di irrigazione automatizzati
- Monitoraggio del flusso e controllo delle perdite
- Molteplici sistem: ◄: -
- Controllo del rie
- Macchine per l'i
- Stazioni di filtra

Dati Tecnici

Pressione d'esercizio: 16 bar

Intervallo di Pressione Operativa:

0.5-16 bar

Materiali

Corpo e Coperchio: Ferro Duttile Diaframma: NR, Tessuto in nylon

rinforzato

Guarnizioni: NR, Tessuto in nylon

rinforzato

Molla: Acciaio Inox

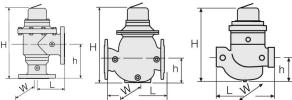
Interni: Acciaio Inox e Nylon Rinforzato con plastica Girante: Polipropilene

Perni e cuscinetti: Polipropilene *Altri materiali sono disponibili su

richiesta

Accessori del Circuito

Pilota di portata: PC-70-MP Gamma di molle Flusso Pilota:


Molla: E-Purple

Velocità di Flusso (m/sec)

: 1,5-3,5

Tubi e raccordi:

Plastica rinforzata e ottone

Specifiche Tecniche Per altri modelli e tipi di connessioni terminali, Consultare la pagina di progettazione completa di BERMAD.

Dimensione	Modello	Connessione	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½"; DN40	Globo	Filettato	7.2	250	270	95	143	0.16	41
2"; DN50	Globo	Filettato	7.3	250	277	95	143	0.16	46
2"; DN50	Angolo	Filettato	8.1	120	353	155	143	0.16	51
3"R; DN80R	Globo	Filettato	7.3	250	277	79	143	0.16	50
3"R; DN80R	Globo	Flangiato	16	310	298	100	200	0.16	50
3"; DN80	Globo	Flangiato	23	300	382	123	210	0.49	115
3"; DN80	Angolo	Flangiato	25.8	150	402	196	210	0.49	126
4"; DN100	Globo	Flangiato	31	350	447	137	250	1	147
4"; DN100	Angolo	Flangiato	36.1	180	481	225	250	1	180
6"; DN150	Globo	Flangiato	71	500	602	216	380	3.8	430
6"; DN150	Angolo	Flangiato	76.7	250	585	306	380	3.8	473
8"; DN200	Globo	Flangiato	93	600	617	228	380	3.8	550
8"; DN200	Angolo	Flangiato	82.5	250	585	280	380	3.8	605
10" ; DN250	Globo	Flangiato	140.5	600	617	228	405	3.8	550

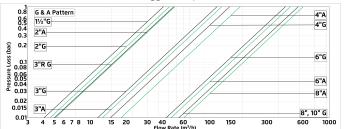
CCDV = Volume di spostamento della camera di controllo • Filettatura = BSP e NPT disponibili.

x000D • Lunghezza extra per filettatura maschio: Globo da 1½" = 67 mm; Globo e angolo da 2" = 77 mm _x000D_

Proprietà del flusso

Dimensione	Accuratezza	DN40	DN50	DN80R	DN80	DN100	DN150	DN200	DN250
Q @ (m³/h)		11/2"	2"	3"R	3"	4"	6"	8"	10"
Flusso minimo Q1	±5%	0.8	0.8	1.2	1.2	1.8	4	6.3	6.3
Flusso transitorio Q2	±2%	1.3	1.3	3	3	4.5	10	15.8	15.8
Flusso permanente Q3	±2%	25	40	100	100	160	250	400	400
Flusso massimo Q4 (breve periodo)	±2%	31	50	125	125	200	313	500	500

^{*}ISO 4604


Opzione ad impulso elettrico

Tipo di registro	Elettronico							
Dimensione	Un impulso per ogni							
Dimensione	10L	100L	1m³	10m³				
1½"-4" ; DN40-100	✓	✓	✓					
6"-10" ; DN150-250		✓	✓	✓				

• Impulso da 10 litri adatto per flussi fino a 180 m³/h.

diagramma di flusso

Circuito a 2 vie "Perdita di Carico Aggiunta" (per "V" inferiore a 2 m/s): 0,3 bar

Differenziale di Pressione e Calcolo della Portata

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h \otimes \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

www.bermad.com