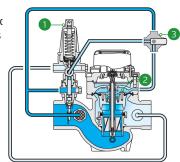
HIDRÓMETRO DE CONTROL DE CAUDAL CON CONTROL HIDRÁULICO, SERVO

Model IR-970-ME-2W-KVZ

El hidrómetro de control de caudal BERMAD con selector manual combina un medidor de caudal de turbina tipo Woltman con una válvula de control hidráulica, accionada por diafragma. Funcionando tanto como medidor de caudal principal y como válvula limitadora de caudal, limita la demanda a un máximo preestablecido. El hidrómetro cuenta con un registro electrónico para la medición precisa del volumen acumulado y del caudal instantáneo, así como una salida de pulsos para aplicaciones avanzadas de monitoreo y control.



Características y ventajas

- Válvula de control y caudalimetro integrado "todo en uno"
 - Ahorra espacio, costes y mantenimiento
- Accionada por la presión en la línea, operación hidráulica
 - Limita el índice de llenado y la demanda excesiva de los consumidores
- Transmision magnética con registro electrónico universal de BERMAD
 - Soporta unidades de medida métricas e imperiales
 - Visualización instantánea del caudal
 - Indicación de flujo hacia adelante y hacia atrás
 - Capacidades de registro de datos
 - Velocidad de salida de pulsos rápida
- Enderezadores Internos de flujo de Entrada y de Salida
 - Ahorra distancias de enderezamiento
 - Mantiene la precisión
- Piloto de Control de Caudal Hidromecánico tipo paleta
 - Pérdida de carga insignificante
 - Amplio rango de ajuste
- Diseño de facil manejo
 - Fácil configuración de flujo
 - Inspección y mantenimiento sencillos en línea

Aplicaciones típicas

- Sistemas de riego automatizados
- Monitorización de flujo y control de fugas
- Múltiples sistemas independientes para consumidores
- Control de
- Máquinas τ
- Estaciones

Operación:

El Piloto Limitador de Caudal tipo Paleta (FCP) 1 se conecta hidráulicamente a la Cámara de Control del Hidrómetro 2 a través del Selector Manual 3 Cuando el Selector Manual se coloca en AUTO, el FCP estrangula el Hidrómetro cerrándolo si la demanda supera el punto de ajuste y lo modula abriéndolo si la demanda es menor que el punto de ajuste. Al cambiar el Selector Manual a CERRADO, se cierra el Hidrómetro.

Control de caudal

Datos técnicos

Presión nominal:

10 bar

Presiones de trabajo:

0.5-10 bar

Materiales

Cuerpo y tapa: Hierro dúctil Diafragma: NR, Nylon reforzado Juntas: NR, Nylon reforzado

Resorte (muelle): Acero

inoxidable

Internas: Acero inoxidable y nylon reforzado con plástico Acelerador: Polipropileno Pivotes y rodamientos:

Polipropileno

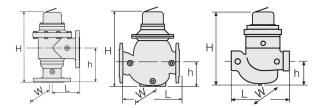
*Otros materiales están disponibles a pedido

Especificaciones técnicas

Consulte la página completa de ingeniería de <u>BERMAD</u> acerca de otras formas y tipos de conectores.

Accesorios del circuito de control

Piloto Limitador: PC-70-P *Gama de resortes del piloto de*


flujo:

Résorte: E-Purple

Velocidad de flujo (m/seg): 1.5-3.5

Tuberías y conectores:

Polietileno

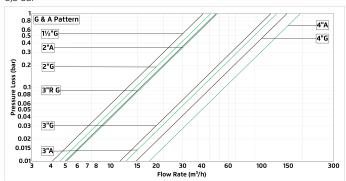
Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Globo	Rosca	7.2	250	270	95	143	0.16	41
2" ; DN50	Globo	Rosca	7.3	250	277	95	143	0.16	46
2" ; DN50	Angular	Rosca	8.1	120	353	155	143	0.16	51
3"R; DN80R	Globo	Rosca	7.3	250	277	79	143	0.16	50
3"R; DN80R	Globo	Embridada	16	310	298	100	200	0.16	50
3"; DN80	Globo	Embridada	23	300	382	123	210	0.49	115
3"; DN80	Angular	Embridada	25.8	150	402	196	210	0.49	126
4"; DN100	Globo	Embridada	31	350	447	137	250	1	147
4"; DN100	Angular	Embridada	36.1	180	481	225	250	1	180

VDCC = Volumen de descarga (desplazamiento) en la cámara de control • Rosca = BSP y estándar americano NPT disponibles.

Propiedades de flujo

Tamaño Q @ (m³/h)	Precisión	DN40 1½"	DN50 2"	DN80R 3"R	DN80 3"	DN100 4"
Q1 Caudal mínimo	±5%	0.8	0.8	1.2	1.2	1.8
Q2 Caudal de transición	±2%	1.3	1.3	3	3	4.5
Q3 Caudal Permanente	±2%	25	40	100	100	160
Q4 Caudal máximo (tiempo corto)	±2%	31	50	125	125	200

^{*}ISO 4604


Opciones de pulso

Tipo de registro	Electrónico						
Tamaño	Un pulso por						
101110110	10L	100L	1m³	10m³			
1½"-4" : DN40-100	√	1	√				

• Pulso de 10 L adecuado para caudales de hasta 180 m³/h.

Diagrama de pérdida de carga

Circuito de 2 vías "Pérdida de carga añadida" (para "V" por debajo de 2 m/s): 0.3 bar

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h \otimes \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

www.bermad.com