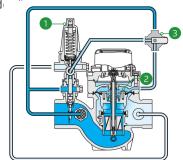
HIDROMETRO DE CONTROLE DE FLUXO

Model IR-970-ME-2W-KVZ

A Válvula Medidora e Limitadora de Vazão BERMAD com seletor manual combina um medidor de áqua tipo Woltman com uma válvula de controle operada hidraulicamente e acionada por diafragma. Funcionando tanto como medidor de vazão principal quanto como válvula de controle de vazão, limita a demanda a um valor máximo pré-definido. O hidrômetro possui um registrador eletrônico para medição precisa do volume acumulado e da vazão instantânea, além de saída de pulso para aplicações avançadas de monitoramento e controle.


[1] O Modelo BERMAD IR-970-ME-2W-KVZ limita a taxa de enchimento e a demanda excessiva, e mede o fluxo.

Benefícios e Características

- Válvula de Controle e Medidor de Fluxo "All-in-One" (Tudo em Um) Integrados
 - Economiza espaço, custo e manutenção
- Controlada Hidraulicamente, Acionada por Pressão de Linha
 - Limita a taxa de abastecimento e a demanda excessiva de consumo
- Acionamento Magnético com Registro Eletrônico Universal BERMAD
 - Suporta unidades de medida métricas e imperiais
 - Exibição instantânea da taxa de fluxo
 - Indicação de fluxo direto e reverso
 - Capacidades de registro de dados
 - Taxa de saída de pulso rápida
- Retificadores de Fluxo de Entrada e Saída Internos
 - Economiza em distâncias de retificação
 - Mantém a precisão
- Piloto de Fluxo Hidromecânico do Tipo Palheta
 - Perda de carga insignificante
 - Ampla faixa de ajuste
- Design Fácil de Usar
 - Fácil configuração de fluxo
 - Inspeção e Serviço Simples em Linha

Aplicações Típicas

- Sistemas de Irrigação Automatizados
- Monitoramento de Fluxo e Controle de Vazamento
- Sistemas de Consumo Múltiplos Independentes
- Controle de Abastecimento da Linha
- Máquinas de Irrigação
- Estações d

Operação:

O Piloto de Controle de Fluxo de Paleta (FCP) [1] conecta-se hidraulicamente à Câmara de Controle da Válvula 2 através do Seletor Manual [3]. Quando o Seletor Manual está na posição AUTO, o FCP modula a Válvula para fechar se a demanda exceder o ponto de ajuste e o modula para abrir se a demanda for inferior ao ponto de ajuste. Ao mudar o Seletor Manual para FECHADO, a Válvula é fechado.

Controle de Vazão

Dados Técnicos

Classe de Pressão: 10 bar

Faixa de Pressão Operacional: 0.5-10 bar

Materiais

Corpo e Tampa: Ferro dúctil Diafragma: NR, tecido de nylon

reforçado

Vedações: NR, tecido de nylon

reforçado **Mola:** Aço inox

Partes Internas: Aço Inoxidável e Plástico Reforçado Bronze Turbina: Polipropileno

Pivôs e Rolamentos: Polipropileno

*Oupropuerio *Outros motorioi

*Outros materiais estão disponíveis

mediante solicitação

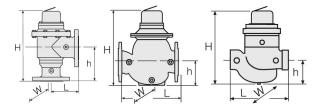
Especificações Técnicas

Para outros tipos de padrões e conexões de encaixe, consulte a página de engenharia completa da <u>BERMAD</u>.

Acessórios do Circuito de Controle

Piloto FC: PC-70-P

Faixa de molas do Piloto de Fluxo:


Mola: E - Roxa

Velocidade de Fluxo (m/s): 1,5 -

3,5

Tubulação e Conexões:

Polietileno

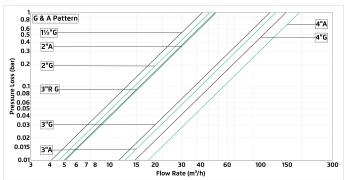
Tamanho	Padrão	Conexão de Encaixe	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Globo	Rosqueado	7.2	250	270	95	143	0.16	41
2" ; DN50	Globo	Rosqueado	7.3	250	277	95	143	0.16	46
2"; DN50	Angular	Rosqueado	8.1	120	353	155	143	0.16	51
3"R; DN80R	Globo	Rosqueado	7.3	250	277	79	143	0.16	50
3"R; DN80R	Globo	Flangeado	16	310	298	100	200	0.16	50
3"; DN80	Globo	Flangeado	23	300	382	123	210	0.49	115
3"; DN80	Angular	Flangeado	25.8	150	402	196	210	0.49	126
4"; DN100	Globo	Flangeado	31	350	447	137	250	1	147
4"; DN100	Angular	Flangeado	36.1	180	481	225	250	1	180

CCDV = Volume de Deslocamento da Câmara de Controle • Rosqueada = BSP e NPT estão disponíveis..

Propriedades do Fluxo

Tamanho	Precisão	DN40	DN50	DN80R	DN80	DN100
Q @ (m³/h)		11/2"	2"	3"R	3"	4"
Vazão Mínimo Q1	±5%	0.8	0.8	1.2	1.2	1.8
Vazão de Transição Q2	±2%	1.3	1.3	3	3	4.5
Vazão Permanente Q3	±2%	25	40	100	100	160
Vazão Máximo Q4 (Curto Período de	±2%	31	50	125	125	200
Tempo)						

^{*}ISO 4604


Opção de Pulso

Tipo de Registro	Eletrônico						
Tamanho	Um pulso por						
Tomornio	10L	100L	1m³	10m³			
11/2"-4" · DN40-100		J	_/				

• Pulso de 10 L adequado para fluxos de até 180 m³/h.

Gráfico de Fluxo

Circuito de 2 Vias "Perda de Carga Adicionada" (para "V" abaixo de 2 m/s): 0,3 bar

Cálculo de Fluxo e Diferencial de Pressão

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$

$$Kv = m^3/h @ \Delta P \text{ of 1 bar}$$

$$Q = m^3/h$$

$$\Delta P = bar$$

www.bermad.com

As informações aqui contidas podem ser alteradas pela BERMAD sem aviso prévio. A BERMAD não se responsabiliza por quaisquer erros.

October 2025

[•] Comprimento extra para rosca macho: Globo de $1\frac{1}{2}$ " = 67 (mm) ; Globo e Angular de 2" = 77 (mm)