
SERMAD | Irrigazione

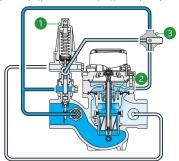
IDROMETRO CONTROLLO PORTATA, SERVO

Model IR-970-MF-2W-KV7

L'idrometro di controllo del flusso BERMAD con selettore manuale combina un misuratore d'acqua a turbina tipo Woltman con una valvola di controllo azionata idraulicamente e comandata a diaframma. Funzionando sia come misuratore di portata principale che come valvola di controllo del flusso, limita la richiesta a un valore massimo preimpostato. L'idrometro è dotato di un registro elettronico per la misurazione precisa del volume accumulato e del flusso istantaneo e di un'uscita a impulsi per applicazioni avanzate di monitoraggio e controllo.

[1] Il modello BERMAD IR-970-ME-2W-KVZ limita la velocità di riempimento e la sovradomanda, e misura il flusso.

Operazioni:


Il Pilota di Controllo Portata a Paletta (FCP) 11 si collega idraulicamente alla Camera di Controllo dell'Idrometro 🛛 tramite il Selettore Manuale 3. Quando il Selettore Manuale è impostato su AUTO, il FCP regola la chiusura dell'Idrometro se la richiesta supera il valore di regolazione e lo modula in apertura se la richiesta è inferiore al valore di regolazione. Impostando il Selettore Manuale su CHIUSA, l'Idrometro viene chiuso.

Caratteristiche e vantaggi

- Valvola di controllo e Misuratore di Flusso integrati «tutto in uno»
 - Consente di risparmiare spazio, costi e manutenzione
- Azionamento con Pressione di Linea controllato idraulicamente
 - Limita il tasso di rifornimento e la domanda eccessiva da parte dei consumatori
- Unità magnetica con registro elettronico universale BERMAD
 - Supporta unità di misura metriche e imperiali
 - Visualizzazione istantanea della portata
 - Indicazione del flusso diretto e inverso
 - Capacità di registrazione dati
 - _x000D_ Emissione impulsi rapida_x000D_
 - Raddrizzatori di Flusso Interni in Ingresso e Uscita
 - Risparmia sulle distanze di raddrizzamento
 - Precisione costante
 - Pilota di Flusso Idromeccanico a paletta
 - Perdita della testa trascurabile
 - Ampia gamma di impostazioni
 - Design intuitivo
 - Facile impostazione del flusso
 - Ispezione e assistenza in linea semplici

Applicazioni tipiche

- Sistemi di irrigazione automatizzati
- Monitoraggio del flusso e controllo delle perdite
- Molteplici s^{*}
- Controllo d
- Macchine p
- Stazioni di

IR-9/U-ME-2W-KV2

Dati Tecnici

Pressione d'esercizio: 10 bar

Intervallo di Pressione Operativa: 0.5-10 bar

Specifiche Tecniche

Per altri modelli e tipi di connessioni terminali,

Consultare la pagina di progettazione completa di BERMAD.

Materiali

Corpo e Coperchio: Ferro Duttile **Diaframma:** NR, Tessuto in nylon

rintorzato

Guarnizioni: NR, Tessuto in nylon

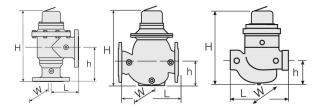
rinforzato

Molla: Acciaio Inox Interni: Acciaio Inox e Nylon Rinforzato con plastica Girante: Polipropilene

Perni e cuscinetti: Polipropilene *Altri materiali sono disponibili su

richiesta

Accessori del Circuito


Pilota di portata : PC-70-P *Gamma di molle Flusso Pilota:*

Molla: E-Purple Velocità di Flusso (m/sec)

: 1,5-3,5

Tubi e raccordi:

Polietilene e poliprolpilene

Dimensione Modello Connessione Peso (Kg) L (mm) H (mm) h (mm) CCDV (Lit) ΚV 1½"; DN40 Globo Filettato 7.2 250 270 95 143 0.16 41 2"; DN50 Globo Filettato 7.3 250 277 95 143 0.16 46 2"; DN50 Angolo Filettato 81 120 353 155 143 0.16 51 3"R; DN80R Globo Filettato 7.3 250 277 79 143 0.16 50 3"R; DN80R 100 Globo Flangiato 16 310 298 200 0.16 50 3"; DN80 Globo Flangiato 23 300 382 123 210 0.49 115 3": DN80 25.8 210 126 Angolo Flangiato 150 402 196 0.49 4"; DN100 Globo Flangiato 31 350 447 137 250 147 36.1 180 225 250 4"; DN100 Angolo Flangiato 481 180

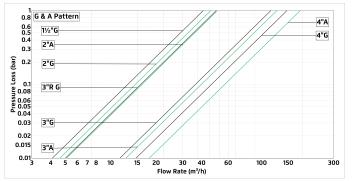
CCDV = Volume di spostamento della camera di controllo • Filettatura = BSP e NPT disponibili.

x000D • Lunghezza extra per filettatura maschio: Globo da 1½" = 67 mm; Globo e angolo da 2" = 77 mm x000D

Proprietà del flusso

Dimensione Q @ (m³/h)	Accuratezza	DN40 1½"	DN50 2"	DN80R 3"R	DN80 3"	DN100 4"
Flusso minimo Q1	±5%	0.8	0.8	1.2	1.2	1.8
Flusso transitorio Q2	±2%	1.3	1.3	3	3	4.5
Flusso permanente Q3	±2%	25	40	100	100	160
Flusso massimo Q4 (breve periodo)	±2%	31	50	125	125	200

^{*}ISO 4604


Opzione ad impulso elettrico

Tipo di registro	Elettronico						
Dimensione	Un impulso per ogni						
	10L	100L	1m³	10m³			
1½"-4"; DN40-100	✓	✓	✓				

• Impulso da 10 litri adatto per flussi fino a 180 m³/h.

diagramma di flusso

Circuito a 2 vie "Perdita di Carico Aggiunta" (per "V" inferiore a 2 m/s): 0,3 bar

Differenziale di Pressione e Calcolo della Portata

$$\Delta P = \left(\frac{Q}{KV}\right)^{2}$$

$$Kv = m^{3}/h @ \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

www.bermad.com