

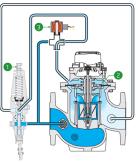
HIDRÓMETRO DE CONTROL DE CAUDAL CON CONTROL HIDRÁULICO, SERVO

Transmisión magnética con registro magnético (M0), circuito de control y accesorios metálicos (R), 2

Model IR-970-M0-55-2W-RV

El hidrómetro de control de caudal BERMAD con control por solenoide combina un medidor de caudal de turbina tipo Woltman con una válvula de control hidráulica, accionada por diafragma. Funcionando tanto como medidor de caudal principal y como válvula de control de caudal, el hidrómetro se abre o cierra en respuesta a una señal eléctrica y limita la demanda a un máximo preestablecido. El hidrómetro cuenta con un registro sellado al vacío y acoplado magnéticamente para una medición precisa del volumen acumulado. Se encuentra disponible una salida de pulsos opcional para mejorar aún más las capacidades del sistema.

De racido R-970-M0-55-2W-RV de BERMAD se abre en respuesta a una señal eléctrica, limita la velocidad de llenado el Piper excesso de acuada de local de la velocidad de llenado el Piper excesso de acuada de Control del Hidrómetro a través del Solenoide de Cuando el Solenoide es activado por una señal eléctrica, habilitando el modo de regulación, el FCP estrangula el Hidrómetro cerrándolo si la demanda supera el punto de ajuste y lo modula abriéndolo si la demanda es menor que el punto de ajuste. Al desactivar el Solenoide, el Hidrómetro se cierra. El Hidrómetro puede abrirse o cerrarse manualmente utilizando la función de apertura total por mando manual del Solenoide.


Características y ventajas

- Válvula de control y caudalimetro integrado "todo en uno"
 - Ahorra espacio, costes y mantenimiento
- Accionada por la presión de la línea, encendido/apagado con control eléctrico
 - Limita el índice de llenado y la demanda excesiva de los consumidores
- Transmision magnética con registro sellado al vacío
 - Mecanismo de tren de engranajes seco
 - Salida de pulsos libre de tensión con interruptor de lengüeta
 - Diversas combinaciones de pulsos
- Enderezadores Internos de flujo de Entrada y de Salida
 - Ahorra distancias de enderezamiento
 - Mantiene la precisión
- Dispositivo de calibración de medición de caudal integrado
 - Medición precisa
- Piloto de Control de Caudal Hidromecánico tipo paleta
 - Pérdida de carga insignificante
 - Amplio rango de ajuste
- Diseño de facil manejo
 - Fácil ajuste de presión
 - Facil ajuste de pre
 Inspección

Aplicacione

- Sistemas de r
- Lectura remo
- Monitorizació
- Múltiples siste

Control de ller

n línea

nsumidores

Datos técnicos

Presión nominal:

16 bar

Presiones de trabajo:

0.5-16 bar

Materiales

Cuerpo y tapa: Hierro dúctil Diafragma: NR, Nylon reforzado Juntas: NR, Nylon reforzado

Resorte (muelle): Acero

inoxidable

Internas: Acero inoxidable y nylon reforzado con plástico Acelerador: Polipropileno Pivotes y rodamientos:

Polipropileno

*Otros materiales están disponibles a pedido

Especificaciones técnicas

Consulte la página completa de ingeniería de **BERMAD** acerca de otras formas y tipos de conectores.

Accesorios del circuito de control

Piloto Limitador: PC-70-MP Gama de resortes del piloto de

flujo:

Résorte: E-Purple

Velocidad de flujo (m/seg): 1.5-3.5

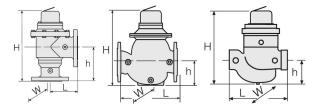
Tuberías y conectores:

Plástico reforzado y latón

Solenoide AC (CA):

S-400-3W

Solenoide DC (CC):


S-400-3W

Solenoide de pulso (Latch):

S-402-3W M.B.

*Para otros solenoides, consulte

a **BERMAD**

Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Globo	Rosca	7.2	250	270	95	143	0.16	41
2" ; DN50	Globo	Rosca	7.3	250	277	95	143	0.16	46
2"; DN50	Angular	Rosca	8.1	120	353	155	143	0.16	51
3"R; DN80R	Globo	Rosca	7.3	250	277	79	143	0.16	50
3"R; DN80R	Globo	Embridada	16	310	298	100	200	0.16	50
3"; DN80	Globo	Embridada	23	300	382	123	210	0.49	115
3"; DN80	Angular	Embridada	25.8	150	402	196	210	0.49	126
4"; DN100	Globo	Embridada	31	350	447	137	250	1	147
4"; DN100	Angular	Embridada	36.1	180	481	225	250	1	180
6" ; DN150	Globo	Embridada	71	500	602	216	380	3.8	430
6"; DN150	Angular	Embridada	76.7	250	585	306	380	3.8	473
8"; DN200	Globo	Embridada	93	600	617	228	380	3.8	550
8"; DN200	Angular	Embridada	82.5	250	585	280	380	3.8	605

VDCC = Volumen de descarga (desplazamiento) en la cámara de control • Rosca = BSP y estándar americano NPT disponibles.

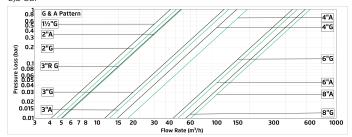
Propiedades de flujo

Tamaño Q @ (m³/h)	Precisión	DN40 1½"	DN50 2"	DN80R 3"R	DN80 3"	DN100 4"	DN150 6"	DN200 8"
Q1 Caudal mínimo	±5%	0.8	0.8	1.2	1.2	1.8	4	6.3
Q2 Caudal de transición	±2%	1.3	1.3	3	3	4.5	10	15.8
Q3 Caudal Permanente	±2%	25	40	100	100	160	250	400
Q4 Caudal máximo (tiempo corto)	±2%	31	50	125	125	200	313	500

^{*}ISO 4604

Opciones de pulso

Tipo de registro Sensor REED - Simple S				Sensor REED - combinado Electrónico						
Tamaño	Un pulso por			r	Un pul	Un pulso por				
Tomono	10L	100L	1m³	10m³	10L+100L	1m³+10m³	10L	100L	1m³	10m³
1½"-4"; DN40-100		✓	✓		✓		✓	✓	✓	
6"-10"; DN150-250			✓	V		✓		✓	✓	V


- Pulso de 10 L (solo disponible con registro electrónico) adecuado para caudales de hasta 180 m^3/h .
- Se transmiten dos pulsos paralelos. Otras frecuencias de pulso están disponibles bajo petición.

Características adicionales

Código	Descripción
ME	Registro electrónico (kit de actualización disponible)

Diagrama de pérdida de carga

Circuito de 2 vías "Pérdida de carga añadida" (para "V" por debajo de 2 m/s): 0,3 bar

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h @ \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = \text{bar}$$

www.bermad.com