

IDROMETRO CONTROLLO PORTATA, SERVO

Model IR-970-M0-50-2W-RV7

L'idrometro BERMAD per il controllo del flusso, dotato di comando remoto idraulico e selettore manuale, combina un contatore d'acqua a turbina tipo Woltman con una valvola di controllo azionata idraulicamente e attuata a diaframma. Funzionando sia come contatore di flusso principale che come valvola di controllo del flusso, opera in risposta a un comando di pressione remoto, limitando la richiesta a un valore massimo preimpostato. È dotato di un registro sigillato sottovuoto per una misurazione precisa del volume. È disponibile un'uscita a impulsi opzionale per aumentare ulteriormente le funzionalità del sistema. L'idrometro può essere chiuso localmente.

[1] Il modello BERMAD IR-970-M0-50-2W-RVZ si apre su comando di caduta di pressione, limitando la velocità di riempimento e l'eccesso di richiesta da parte del consumatore.

Operazioni:

Il Pilota di Controllo Portata a Paletta (FCP) 11 si collega idraulicamente alla Camera di Controllo [2] tramite la Valvola Shuttle [3] e il Selettore Manuale [4]. Impostando il Selettore Manuale su AUTO si abilita il Comando Remoto. Quando il Comando Remoto è scaricato, il FCP regola l'idrometro chiudendolo se la richiesta supera il valore di regolazione e modulandolo in apertura se la richiesta diminuisce. In caso di comando di aumento pressione, la Valvola Shuttle commuta, pressurizzando la camera di controllo e chiudendo l'idrometro. Impostando il Selettore Manuale su CHIUSA, si esclude il Comando Remoto e si chiude l'idrometro.

Tutte le immagini in questo catalogo sono solo a scopo illustrativo

Caratteristiche e vantaggi

- Valvola di controllo e Misuratore di Flusso integrati «tutto in uno»
 - Consente di risparmiare spazio, costi e manutenzione
- Accensione/spegnimento azionato dalla pressione di linea, controllato idraulicamente
 - Limita il tasso di rifornimento e la domanda eccessiva da parte dei consumatori
- Azionamento magnetico con registro sigillato sottovuoto
 - Meccanismo di trasmissione senza acqua
 - Uscita a impulsi senza tensione con interruttore reed-switch
 - Diverse combinazioni di impulsi
- Raddrizzatori di Flusso Interni in Ingresso e Uscita
 - Risparmia sulle distanze di raddrizzamento
 - Precisione costante
- Dispositivo di calibrazione del Misuratore di Flusso integrato
 - Perdita della testa trascurabile
 - Misurazione precisa
- Pilota di Flusso Idromeccanico a paletta
 - Ampia gamma di impostazioni
- Design intuitivo
 - Facile impostazione del flusso
 - Ispezione e assistenza in linea semplici

Applicazioni tipiche

- Sistemi di irrigazione automatizzati
- Monitoraggio d Molteplici sister
- Controllo del rie
- Macchine per l'i
- Stazioni di filtra

perdite

Dati Tecnici

Pressione d'esercizio: 16 bar

Intervallo di Pressione Operativa:

Specifiche Tecniche

0.5-16 bar

Materiali

Corpo e Coperchio: Ferro Duttile Diaframma: NR, Tessuto in nylon

rinforzato

Guarnizioni: NR, Tessuto in nylon

rinforzato

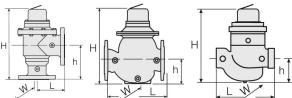
Molla: Acciaio Inox Interni: Acciaio Inox e Nylon Rinforzato con plastica Girante: Polipropilene

Perni e cuscinetti: Polipropilene *Altri materiali sono disponibili su

richiesta

Accessori del Circuito

Pilota di portata: PC-70-MP Gamma di molle Flusso Pilota:


Molla: E-Purple

Velocità di Flusso (m/sec)

: 1,5-3,5

Tubi e raccordi:

Plastica rinforzata e ottone

Per altri modelli e tipi di connessioni terminali, Consultare la pagina di progettazione completa di BERMAD.

Dimensione	Modello	Connessione	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Globo	Filettato	7.2	250	270	95	143	0.16	41
2"; DN50	Globo	Filettato	7.3	250	277	95	143	0.16	46
2" ; DN50	Angolo	Filettato	8.1	120	353	155	143	0.16	51
3"R; DN80R	Globo	Filettato	7.3	250	277	79	143	0.16	50
3"R; DN80R	Globo	Flangiato	16	310	298	100	200	0.16	50
3"; DN80	Globo	Flangiato	23	300	382	123	210	0.49	115
3"; DN80	Angolo	Flangiato	25.8	150	402	196	210	0.49	126
4"; DN100	Globo	Flangiato	31	350	447	137	250	1	147
4"; DN100	Angolo	Flangiato	36.1	180	481	225	250	1	180
6"; DN150	Globo	Flangiato	71	500	602	216	380	3.8	430
6"; DN150	Angolo	Flangiato	76.7	250	585	306	380	3.8	473
8"; DN200	Globo	Flangiato	93	600	617	228	380	3.8	550
8"; DN200	Angolo	Flangiato	82.5	250	585	280	380	3.8	605

CCDV = Volume di spostamento della camera di controllo • Filettatura = BSP e NPT disponibili.

x000D • Lunghezza extra per filettatura maschio: Globo da 1½" = 67 mm; Globo e angolo da 2" = 77 mm _x000D_

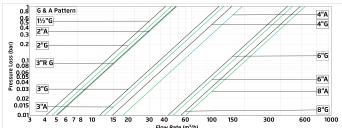
Proprietà del flusso

Dimensione Q @ (m³/h)	Accuratezza	DN40 1½"	DN50 2"	DN80R 3"R	DN80 3"	DN100 4"	DN150 6"	DN200 8"
Flusso minimo Q1	±5%	0.8	0.8	1.2	1.2	1.8	4	6.3
Flusso transitorio Q2	±2%	1.3	1.3	3	3	4.5	10	15.8
Flusso permanente Q3	±2%	25	40	100	100	160	250	400
Flusso massimo Q4	±2%	31	50	125	125	200	313	500
(breve periodo)								

^{*}ISO 4604

Opzione ad impulso elettrico

Tipo di registro Interruttore Reed - Sing <mark>aho</mark> erruttore Reed - Co					Reed - Com	binatoElettronico				
Dimensione	Un i	impulso per ogni Un impulso per ogni				Un impulso per ogni				
Dillensione	10L	100L	1m³	10m³	10L+100L	1m³+10m³	10L	100L	1m³	10m³
1½"-4" ; DN40-100		✓	✓		✓		√	✓	✓	
6"-10" : DN150-250			1	1		✓		1	1	1


- Impulso da 10 litri (disponibile solo con registro elettronico) adatto per flussi fino a 180 m³/h.
- Vengono trasmessi due impulsi paralleli. Altre frequenze del polso sono disponibili su richiesta.

Caratteristiche Aggiuntive

Codice	Descrizione
ME	Registro elettronico (è disponibile il kit di aggiornamento)

diagramma di flusso

Circuito a 2 vie "Perdita di Carico Aggiunta" (per "V" inferiore a 2 m/s): 0,3 bar

Differenziale di Pressione e Calcolo della Portata

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h @ \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

www.bermad.com

Le informazioni contenute nel presente documento possono essere modificate da BERMAD senza preavviso. BERMAD non può essere ritenuto responsabile per eventuali errori. © Copyright 2015-2025 BERMAD CS Ltd. October 2025