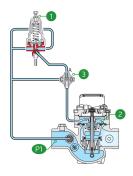
VALVULA MEDIDORA E SUSTENTADORA DE PRESSÃO

Model IR-930-ME-3W-KXZ

A Válvula Medidora e Sustentadora de pressão BERMAD com seletor manual combina um medidor de água tipo Woltman com uma válvula de controle operada hidraulicamente e acionada por diafragma. Funcionando tanto como medidor de vazão principal quanto como válvula de sustentação de pressão, ele mantém uma pressão mínima pré-ajustada a montante (P1) ou abre totalmente quando P1 excede o ponto de ajuste. O hidrômetro possui um registrador eletrônico para medição precisa de volume e vazão e uma saída de pulso para aplicações avançadas de monitoramento e controle.

- [1] O Modelo BERMAD IR-930-ME-3W-KXZ mantém a pressão do sistema de abastecimento, evita o esvaziamento do sistema e mede o fluxo.
- [2] Válvula Combinada de Ar Modelo C30
- [3] Válvula de Alívio Rápido de Pressão Modelo IR-13Q-2V
- [4] Válvula Redutora de Pressão (Piloto Superior) Modelo IR 12T 55 3V X

[5] Vályula de Ar Cinética Modelo K10 6) Controlador de Irrigação Inteligente-OMEGA


O Piloto de Sustentador de Pressão (PSP) [1] conecta-se hidraulicamente à Câmara de Controle da válvula medidora através do Seletor Manual [3]. Quando o Seletor Manual está ajustado para AUTO, o PSP estrangula a válvula para fechar se a pressão a montante [P1] cair abaixo do ponto de ajuste e o abre totalmente quando P1 excede o ponto de ajuste. Ao mudar o Seletor Manual para FECHADO, a válvula é fechada.

Benefícios e Características

- Válvula de Controle e Medidor de Fluxo "All-in-One" (Tudo em Um) Integrados
 - Economiza espaço, custo e manutenção
- Controle de Pressão Hidráulico
 - Acionada por pressão de linha
 - Prioriza as zonas de pressão
 - Controla o abastecimento do sistema
- Acionamento Magnético com Registro Vedado a Vácuo
 - Suporta unidades de medida métricas e imperiais
 - Exibição instantânea da taxa de fluxo
 - Indicação de fluxo direto e reverso
 - Capacidades de registro de dados
 - Taxa de saída de pulso rápida
- Retificadores de Fluxo de Entrada e Saída Internos
 - Economiza em distâncias de retificação
 - Mantém a precisão
- Design Fácil de Usar
 - Fácil configuração de pressão
 - Inspeção e Serviço Simples em Linha

Aplicações Típicas

- Leitura Remota de Dados de Fluxo
- Monitoramento de Fluxo e Controle de Vazamento
- Soluções de Controle de Abastecimento da Linha
- Prevenção do Esvaziamento da Linha
- Sistemas Sujeitos a Diferentes Pressões de Alimentação
- Sustentação de Pressão de Retrolavagem de Filtro em Campo

Dados Técnicos

Classe de Pressão: 10 bar

Faixa de Pressão Operacional: 0.5-10 bar

Materiais

Corpo e Tampa: Ferro dúctil Diafragma: NR, tecido de nylon

reforçado

Vedações: NR, tecido de nylon

reforçado **Mola:** Aço inox

Partes Internas: Aço Inoxidável e Plástico Reforçado Bronze

Turbina: Polipropileno **Pivôs e Rolamentos:**Polipropileno

*Outros materiais estão disponíveis

mediante solicitação

Especificações Técnicas

Para outros tipos de padrões e conexões de encaixe, consulte a página de engenharia completa da <u>BERMAD</u>.

Acessórios do Circuito de Controle

Piloto PS: PC-SHARP-X-P

Mola	Cor da Mola	Faixa de ajuste
J		0.2-1.7 bar
K		0.5-3.0 bar
N		0.8-6.5 bar
V		1.0-10.0 bar

Mola padrão - marcada em negrito

Tubulação e Conexões:

Polietileno

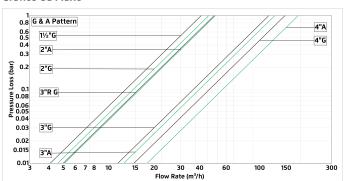
H	h	H h	
<u>.</u>	M		

Tamanho	Padrão	Conexão de Encaixe	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Globo	Rosqueado	7.2	250	270	95	143	0.16	41
2" ; DN50	Globo	Rosqueado	7.3	250	277	95	143	0.16	46
2" ; DN50	Angular	Rosqueado	8.1	120	353	155	143	0.16	51
3"R; DN80R	Globo	Rosqueado	7.3	250	277	79	143	0.16	50
3"R; DN80R	Globo	Flangeado	16	310	298	100	200	0.16	50
3" ; DN80	Globo	Flangeado	23	300	382	123	210	0.49	115
3" ; DN80	Angular	Flangeado	25.8	150	402	196	210	0.49	126
4"; DN100	Globo	Flangeado	31	350	447	137	250	1	147
4"; DN100	Angular	Flangeado	36.1	180	481	225	250	1	180

CCDV = Volume de Deslocamento da Câmara de Controle • Rosqueada = BSP e NPT estão disponíveis..

Propriedades do Fluxo

Tamanho Q @ (m³/h)	Precisão	DN40 1½"	DN50 2"	DN80R 3"R	DN80 3"	DN100 4"
Vazão Mínimo Q1	±5%	0.8	0.8	1.2	1.2	1.8
Vazão de Transição Q2	±2%	1.3	1.3	3	3	4.5
Vazão Permanente Q3	±2%	25	40	100	100	160
Vazão Máximo Q4 (Curto Período de Tempo)	±2%	31	50	125	125	200


^{*}ISO 4604

Opção de Pulso

Tipo de Registro	Eletrônico					
Tamanho	Um pulso por					
	10L	100L	1m³	10m³		
11/5"-4" · DN40-100	1	1	1			

• Pulso de 10 L adequado para fluxos de até 180 m³/h.

Gráfico de Fluxo

Cálculo de Fluxo e Diferencial de Pressão

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h @ \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

www.bermad.com

As informações aqui contidas podem ser alteradas pela BERMAD sem aviso prévio. A BERMAD não se responsabiliza por quaisquer erros.

October 2025

[•] Comprimento extra para rosca macho: Globo de $1\frac{1}{2}$ " = 67 (mm) ; Globo e Angular de 2" = 77 (mm)