

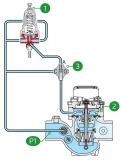
HIDRÓMETRO SOSTENEDOR DE PRESIÓN

Model IR-930-M0-3W-KXZ

El hidrómetro sostenedor de presión BERMAD con selector manual combina un medidor de caudal de turbina tipo Woltman con una válvula de control hidráulica, accionada por diafragma. Funcionando tanto como medidor de caudal en línea principal y como válvula sostenedora de presión, mantiene una presión mínima aguas arriba preestablecida (P1) o se abre completamente cuando P1 supera el punto de ajuste. El hidrómetro cuenta con un registro sellado al vacío para una medición precisa del volumen. Se encuentra disponible una salida de pulsos opcional para mejorar aún más las capacidades del sistema.

- [1] Válvula de aire combinada Modelo IR-C30
- [2] Válvula reductora de presión Modelo IR-12T-55-3W-X
- [3] Combination Air Valve Model IR-C10
- [4] RTU- unidad terminal remota

Operación:


El Piloto Sostenedor de Presión (PSP) [1] se conecta hidráulicamente a la Cámara de Control del Hidrómetro 2 a través del Selector Manual [3]. Cuando el Selector Manual está en AUTO, el PSP estrangula el Hidrómetro cerrándolo si la presión aguas arriba [P1] cae por debajo del punto de ajuste y lo abre completamente cuando P1 supera el punto de ajuste. Al cambiar el Selector Manual a CERRADO, se cierra el Hidrómetro.

Características y ventajas

- Válvula de control y caudalimetro integrado "todo en uno" Ahorra espacio, costes y mantenimiento
- Control hidráulico de presión
 - Accionada por la presión en la línea
 - Prioriza las zonas de presión
 - Controla el llenado del sistema
 - Se abre completamente al aumentar la presión de
- Transmision magnética con registro sellado al vacío
 - Mecanismo de tren de engranajes seco
 - Salida de pulsos libre de tensión con interruptor de lengüeta
 - Diversas combinaciones de pulsos
- Enderezadores Internos de flujo de Entrada y de Salida
 - Ahorra distancias de enderezamiento
 - Mantiene la precisión
- Dispositivo de calibración de medición de caudal integrado
 - Medición precisa
- Diseño de facil manejo
 - Fácil ajuste de presión
 - Inspección y mantenimiento sencillos en línea

Aplicaciones típicas

- Lectura remota de datos de flujo
- Monitorización de flujo y control de fugas
- Soluciones de control de llenado de líneas
- Prevención de vaciado de líneas
- Sistemas sujetos a fluctuaciones en la presión de suministro
- Sostenedora de presion para retrolavado de los filtros secundarios

Datos técnicos

Presión nominal:

10 bar

Presiones de trabajo:

0.5-10 bar

Materiales

Cuerpo y tapa: Hierro dúctil Diafragma: NR, Nylon reforzado Juntas: NR, Nylon reforzado

Resorte (muelle): Acero

inoxidable

Internas: Acero inoxidable y nylon reforzado con plástico Acelerador: Polipropileno Pivotes y rodamientos:

Polipropileno

*Otros materiales están disponibles a pedido

Especificaciones técnicas

Consulte la página completa de ingeniería de <u>BERMAD</u> acerca de otras formas y tipos de conectores.

Accesorios del circuito de control

Piloto Sostenedor: PC-

SHARP-X-P

Resorte (muelle)	Color del resorte	rango de ajuste			
J	Verde	0.2-1.7 bar			
K	Gris	0.5-3.0 bar			
N	Natural	0.8-6.5 bar			
V	Azul y blanco	1.0-10.0 bar			

Resorte estándar - marcado en negrita

Tuberías y conectores:

Polietileno

H-	h	H	H
	MIL	N L	LW

Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Globo	Rosca	7.2	250	270	95	143	0.16	41
2" ; DN50	Globo	Rosca	7.3	250	277	95	143	0.16	46
2" ; DN50	Angular	Rosca	8.1	120	353	155	143	0.16	51
3"R; DN80R	Globo	Rosca	7.3	250	277	79	143	0.16	50
3"R; DN80R	Globo	Embridada	16	310	298	100	200	0.16	50
3"; DN80	Globo	Embridada	23	300	382	123	210	0.49	115
3"; DN80	Angular	Embridada	25.8	150	402	196	210	0.49	126
4"; DN100	Globo	Embridada	31	350	447	137	250	1	147
4"; DN100	Angular	Embridada	36.1	180	481	225	250	1	180

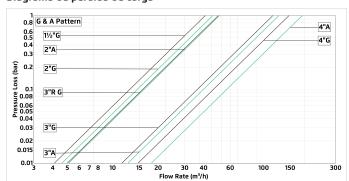
VDCC = Volumen de descarga (desplazamiento) en la cámara de control • Rosca = BSP y estándar americano NPT disponibles.

Propiedades de flujo

Tamaño Q @ (m³/h)	Precisión	DN40 1½"	DN50 2"	DN80R 3"R	DN80 3"	DN100 4"
Q1 Caudal mínimo	±5%	0.8	0.8	1.2	1.2	1.8
Q2 Caudal de transición	±2%	1.3	1.3	3	3	4.5
Q3 Caudal Permanente	±2%	25	40	100	100	160
Q4 Caudal máximo (tiempo corto)	±2%	31	50	125	125	200

^{*}ISO 4604

Opciones de pulso


Tipo de registro	Sens	Sensor REED - Simple Sensor REED - combinad					o Electrónico			
Tamaño	Un pulso por			r	Un pulso por		Un pulso por			
Tomono	10L	100L	1m³	10m³	10L+100L	1m³+10m³	10L	100L	1m³	10m³
1½"-4"; DN40-100		✓	✓		✓		✓	✓	✓	

- Pulso de 10 L (solo disponible con registro electrónico) adecuado para caudales de hasta 180 m³/h.
- Se transmiten dos pulsos paralelos. Otras frecuencias de pulso están disponibles bajo petición.

Características adicionales

Código	Descripción			
ME	Registro electrónico (kit de actualización disponible)			

Diagrama de pérdida de carga

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h \text{ @ } \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = \text{bar}$$

www.bermad.com