

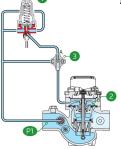
IDROMETRO DI RIDUZIONE DELLA PRESSIONE, 3-VIE

Model IR-930-M0-3W-KXZ

L'idrometro BERMAD per il mantenimento della pressione con selettore manuale combina un misuratore d'acqua a turbina tipo Woltman con una valvola di controllo azionata idraulicamente e comandata a diaframma. Funzionando sia come misuratore di portata principale che come valvola di mantenimento della pressione, mantiene una pressione minima a monte preimpostata (P1) oppure si apre completamente quando P1 supera il valore di regolazione. L'idrometro è dotato di un registro sigillato sottovuoto per una misurazione precisa del volume. È disponibile un'uscita a impulsi opzionale per aumentare ulteriormente le funzionalità

- [1] Il modello BERMAD IR-930-M0-3W-KXZ mantiene la pressione del sistema di alimentazione, previene lo svuotamento del sistema e misura il flusso.
- [2] Valvola dell'Aria Combinata Modello IR-C30
- [3] Valvola di scarico rapido della pressione Modello IR-13Q-2W
- [4] Valvola di riduzione della pressione Modello IR-121-55-3W-X (3) Yal Yazi dell'Aria Combinata Modello IR-C10
- [6] Valvola dell'Aria Cinetica Modello IR-K10 Il Pilota di Mantenimento della Pressione (PSP) [1] è collegato idraulicamente alla Camera di Controllo dell'Idrometro 🛛 tramite il Selettore Manuale 3. Quando il Selettore Manuale è impostato su AUTO, il PSP regola la chiusura dell'idrometro se la pressione a monte [P1] scende sotto il valore di regolazione e lo apre completamente quando P1 supera il valore di regolazione.

Spostando il Selettore Manuale su CHIUSA si chiude l'idrometro.


Caratteristiche e vantaggi

- Valvola di controllo e Misuratore di Flusso integrati «tutto in uno»
 - Consente di risparmiare spazio, costi e manutenzione
- Controllo della Pressione Idraulica
 - Azionata dalla pressione di linea
 - Assegna priorità alle zone di pressione
 - Controlla il riempimento del sistema
 - Si apre completamente all'aumento della pressione della linea
- Azionamento magnetico con registro sigillato sottovuoto
 - Meccanismo di trasmissione senza acqua
 - Uscita a impulsi senza tensione con interruttore reed-switch
 - Diverse combinazioni di impulsi
- Raddrizzatori di Flusso Interni in Ingresso e Uscita
 - Risparmia sulle distanze di raddrizzamento
 - Precisione costante
- Dispositivo di calibrazione del Misuratore di Flusso integrato
 - Misurazione precisa
- Design intuitivo
 - Facile impostazione della pressione
 - Ispezione e assistenza in linea semplici

Applicazioni tipiche

- Lettura remota dei dati del Flusso
- Monitoraggio del flusso e controllo delle perdite
- Soluzioni per il controllo del riempimento della linea
- Prevenzione dello svuotamento della linea
- Sistemi Soggetti a Mariazioni della Proccione di Alimentazione
- Filtri interni, mar

Dati Tecnici

Pressione d'esercizio: 10 bar

Intervallo di Pressione Operativa:

Specifiche Tecniche

Per altri modelli e tipi di connessioni terminali,

Consultare la pagina di progettazione completa di BERMAD.

0.5-10 bar

Materiali

Corpo e Coperchio: Ferro Duttile Diaframma: NR, Tessuto in nylon

rinforzato

Guarnizioni: NR, Tessuto in nylon

rinforzato

Molla: Acciaio Inox

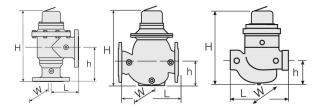
Interni: Acciaio Inox e Nylon Rinforzato con plastica Girante: Polipropilene

Perni e cuscinetti: Polipropilene *Altri materiali sono disponibili su

richiesta

Accessori del Circuito

Pilota PSV: PC-SHARP-X-P


Colore Molla	Range di Regolazione				
	0.2-1.7 bar				
Grigio	0.5-3.0 bar				
Naturale	0.8-6.5 bar				
Blu & Bianco	1.0-10.0 bar				
	Grigio Naturale				

Molla standard - indicata in grassetto

x000D

Tubi e raccordi:

Polietilene e poliprolpilene

Dimensione	Modello	Connessione	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Globo	Filettato	7.2	250	270	95	143	0.16	41
2" ; DN50	Globo	Filettato	7.3	250	277	95	143	0.16	46
2"; DN50	Angolo	Filettato	8.1	120	353	155	143	0.16	51
3"R; DN80R	Globo	Filettato	7.3	250	277	79	143	0.16	50
3"R; DN80R	Globo	Flangiato	16	310	298	100	200	0.16	50
3"; DN80	Globo	Flangiato	23	300	382	123	210	0.49	115
3"; DN80	Angolo	Flangiato	25.8	150	402	196	210	0.49	126
4"; DN100	Globo	Flangiato	31	350	447	137	250	1	147
4"; DN100	Angolo	Flangiato	36.1	180	481	225	250	1	180

CCDV = Volume di spostamento della camera di controllo • Filettatura = BSP e NPT disponibili.

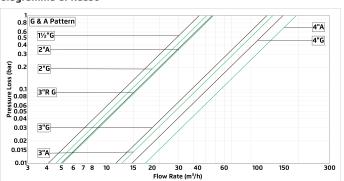
x000D • Lunghezza extra per filettatura maschio: Globo da 1½" = 67 mm; Globo e angolo da 2" = 77 mm x000D

Proprietà del flusso

Dimensione Q @ (m³/h)	Accuratezza	DN40 1½"	DN50 2"	DN80R 3"R	DN80 3"	DN100 4"
Flusso minimo Q1	±5%	0.8	0.8	1.2	1.2	1.8
Flusso transitorio Q2	±2%	1.3	1.3	3	3	4.5
Flusso permanente Q3	±2%	25	40	100	100	160
Flusso massimo Q4 (breve periodo)	±2%	31	50	125	125	200

^{*}ISO 4604

Opzione ad impulso elettrico


Tipo di registro Interruttore Reed - Sing <mark>olo</mark> erruttore Reed - CombinatoElettronico										
Dimensione	Un impulso per ogni			ogni	Un impuls	Un impulso per ogni				
Billensione	10L	100L	1m³	10m³	10L+100L	1m³+10m³	10L	100L	1m³	10m³
1½"-4" ; DN40-100		V	V		√		✓	✓	√	

- Impulso da 10 litri (disponibile solo con registro elettronico) adatto per flussi fino a 180 m³/h.
- Vengono trasmessi due impulsi paralleli. Altre frequenze del polso sono disponibili su richiesta.

Caratteristiche Aggiuntive

Codice	Descrizione
ME	Registro elettronico (è disponibile il kit di aggiornamento)

diagramma di flusso

Differenziale di Pressione e Calcolo della Portata

$$\Delta P = \left(\frac{Q}{Kv}\right)^2 \qquad \begin{array}{c} Kv = m^3/h \text{ @ } \Delta P \text{ of 1 bar} \\ Q = m^3/h \\ \Delta P = \text{bar} \end{array}$$

www.bermad.com