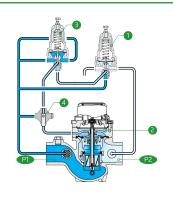


HIDRÓMETRO REDUCTOR Y SOSTENEDOR DE PRESIÓN, 3 VÍAS

Model IR-923-MF-3W-KX7

El Piloto Reductor de Presión (PRP) [1] ordena al Hidrómetro que cierre gradualmente cuando la Presión de Salida [P2] supera el ajuste del piloto, y que module la apertura cuando desciende por debajo del ajuste del piloto. La Válvula de Paso de Salida [2] permite el cierre manual.

Características y ventajas


- Válvula de control y caudalimetro integrado "todo en uno"
 - Ahorra espacio, costes y mantenimiento
- Accionada por la presión en la línea, operación hidráulica
 - Protege los sistemas aguas abajo
 - Prioriza las zonas de presión
 - Controla el llenado del sistema
- Transmision magnética con registro electrónico universal de BERMAD
 - Soporta unidades de medida métricas e imperiales
 - Visualización instantánea del caudal
 - Indicación de flujo hacia adelante y hacia atrás
 - Capacidades de registro de datos
 - Velocidad de salida de pulsos rápida
- Enderezadores Internos de flujo de Entrada y de Salida
 - Ahorra distancias de enderezamiento
 - Mantiene la precisión
- Diseño de facil maneio
 - Fácil ajuste de presión
 - Inspección y mantenimiento sencillos en línea

Aplicaciones típicas

- Lectura remota de datos de flujo
- Monitorización de flujo y control de fugas
- Soluciones de control de llenado de líneas
- Prevención de vaciado de líneas
- Sistemas reductores de presión
- Sistemas sujetos a fluctuaciones en la presión de suministro

Operación:

El Piloto Reductor de Presión (PRP) 11 se conecta hidráulicamente a la Cámara de Control [2] a través del Piloto Sostenedor de Presión (PSP) [3] y el Selector Manual [4]. En modo AUTO, el PSP estrangula el cierre del hidrómetro si la presión de entrada [P1] cae por debajo de su punto de ajuste. Cuando P1 supera el punto de ajuste del PSP, el PRP toma el control, cerrando el hidrómetro si la presión de salida [P2] excede su punto de ajuste. El hidrómetro se abre completamente cuando P2 cae por debajo del punto de ajuste del PRP, mientras P1 permanece por encima del punto de ajuste del PSP. Al colocar el Selector Manual en CERRADO, se cierra el hidrómetro.

IR-923-MF-3W-KX7

Datos técnicos

Presión nominal:

10 bar

Presiones de trabajo:

0.5-10 bar

Materiales

Cuerpo y tapa: Hierro dúctil Diafragma: NR, Nylon reforzado Juntas: NR, Nylon reforzado

Resorte (muelle): Acero

inoxidable

Internas: Acero inoxidable y nylon reforzado con plástico Acelerador: Polipropileno Pivotes y rodamientos:

Polipropileno

*Otros materiales están disponibles a pedido

Especificaciones técnicas

Consulte la página completa de ingeniería de <u>BERMAD</u> acerca de otras formas y tipos de conectores.

Accesorios del circuito de control

Piloto Reductor: PC-SHARP-

X-P

Piloto Sostenedor: PC-

SHARP-X-P

Resorte (muelle)	Color del resorte	rango de ajuste			
J	Verde	0.2-1.7 bar			
K	Gris	0.5-3.0 bar			
N	0.8-6.5 bar				
V	Azul y blanco	1.0-10.0 bar			
Resorte estándar - marcado en negrit					

Tuberías y conectores:

Polietileno

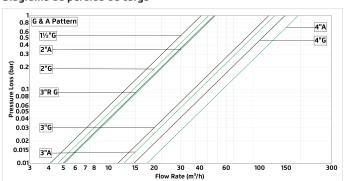
	/				
е (estándar - mar	cado en negrita	∂		
	H	h H	h	H	h h

Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Globo	Rosca	7.2	250	270	95	143	0.16	41
2" ; DN50	Globo	Rosca	7.3	250	277	95	143	0.16	46
2" ; DN50	Angular	Rosca	8.1	120	353	155	143	0.16	51
3"R; DN80R	Globo	Rosca	7.3	250	277	79	143	0.16	50
3"R; DN80R	Globo	Embridada	16	310	298	100	200	0.16	50
3"; DN80	Globo	Embridada	23	300	382	123	210	0.49	115
3"; DN80	Angular	Embridada	25.8	150	402	196	210	0.49	126
4"; DN100	Globo	Embridada	31	350	447	137	250	1	147
4"; DN100	Angular	Embridada	36.1	180	481	225	250	1	180

VDCC = Volumen de descarga (desplazamiento) en la cámara de control • Rosca = BSP y estándar americano NPT disponibles.

Propiedades de flujo

Tamaño Q @ (m³/h)	Precisión	DN40 1½"	DN50 2"	DN80R 3"R	DN80 3"	DN100 4"
Q1 Caudal mínimo	±5%	0.8	0.8	1.2	1.2	1.8
Q2 Caudal de transición	±2%	1.3	1.3	3	3	4.5
Q3 Caudal Permanente	±2%	25	40	100	100	160
Q4 Caudal máximo (tiempo corto)	±2%	31	50	125	125	200


^{*}ISO 4604

Opciones de pulso

Tipo de registro	Electrónico						
Tamaño	Un pulso por						
	10L	100L	1m³	10m³			
1½"-4"; DN40-100	✓	✓	✓				

• Pulso de 10 L adecuado para caudales de hasta 180 m³/h.

Diagrama de pérdida de carga

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h \textcircled{D} \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

www.bermad.com