



# Model IR-920-ME-55-3W-KX

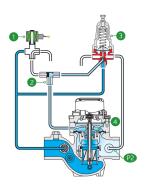
El hidrómetro reductor de presión BERMAD con control por solenoide combina un medidor de caudal de turbina tipo Woltman con una válvula de control hidráulica, accionada por diafragma. Funciona tanto como medidor de caudal principal y como válvula reductora de presión, abriéndose o cerrándose en respuesta a una orden eléctrica y reduciendo la presión aguas arriba más alta a una presión aguas abajo constante más baja, o abriéndose completamente cuando la presión desciende por debajo del punto de ajuste. Cuenta con un registro electrónico para una medición precisa de volumen y caudal, y una salida de pulsos para un monitoreo y control mejorados.





- [1] Válvula de aire combinada Modelo IR-C30
- [2] Válvula reductora de presión Modelo IR-12T-55-3W-X
- [3] Combination Air Valve Model IR-C10
- [4] RTU- unidad terminal remota

# Características y ventajas


- Válvula de control y caudalimetro integrado "todo en uno"
  - Ahorra espacio, costes y mantenimiento
- Accionada por la presión de la línea, encendido/apagado con control eléctrico
  - Protege los sistemas aguas abajo
- Transmision magnética con registro electrónico universal de BERMAD
  - Soporta unidades de medida métricas e imperiales
  - Visualización instantánea del caudal
  - Indicación de flujo hacia adelante y hacia atrás
  - Capacidades de registro de datos
  - Velocidad de salida de pulsos rápida
- Enderezadores Internos de flujo de Entrada y de Salida
  - Ahorra distancias de enderezamiento
  - Mantiene la precisión
- Diseño de facil manejo
  - Fácil ajuste de presión
  - Inspección y mantenimiento sencillos en línea

### Aplicaciones típicas

- Sistemas de riego automatizados
- Lectura remota de datos de flujo
- Monitorización de flujo y control de fugas
- Sistemas reductores de presión
- Sistemas sujetos a fluctuaciones en la presión de suministro
- Centros de distribución

### Operación:

La "T" selectora 🔟 conecta hidráulicamente el Solenoide 🔁 o el Piloto Reductor de Presión (PRP) 3 con la Cámara de Control del Hidrómetro [4]. Cuando el solenoide está activado, el PRP ordena al hidrómetro que cierre de forma modulante si la Presión de Salida [P2] supera el valor de ajuste, y que abra completamente cuando desciende por debajo del ajuste. En respuesta a una señal eléctrica, el solenoide conmuta, dirigiendo la presión de línea a través de la "T" selectora hacia la cámara de control. Esto provoca el cierre del hidrómetro. El solenoide también dispone de apertura o cierre manual.



### Datos técnicos

Presión nominal:

10 bar

Presiones de trabajo:

Especificaciones técnicas

0.5-10 bar

### **Materiales**

Cuerpo y tapa: Hierro dúctil Diafragma: NR, Nylon reforzado Juntas: NR, Nylon reforzado

Resorte (muelle): Acero

inoxidable

Internas: Acero inoxidable y nylon reforzado con plástico Acelerador: Polipropileno Pivotes y rodamientos:

Polipropileno

\*Otros materiales están disponibles a

# pedido

Consulte la página completa de ingeniería de <u>BERMAD</u> acerca de otras formas y tipos de conectores.

# Accesorios del circuito de control

Piloto Reductor: PC-SHARP-

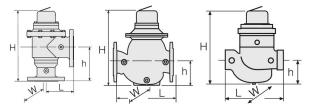
X-P

| Resorte<br>(muelle) | Color del<br>resorte | rango de<br>ajuste |  |  |
|---------------------|----------------------|--------------------|--|--|
| J                   | Verde                | 0.2-1.7 bar        |  |  |
| K                   | Gris                 | 0.5-3.0 bar        |  |  |
| N                   | Natural              | 0.8-6.5 bar        |  |  |
| V                   | Azul y blanco        | 1.0-10.0 bar       |  |  |

Resorte estándar - marcado en negrita

### Tuberías y conectores:

Polietileno


Solenoide AC (CA): S-390-T-3W P.B. Solenoide DC (CC):

Solenoide de pulso (Latch):

S-392-T-3W P.B

S-390-T-3W P.B.

\*Para otros solenoides y pilotos, consulte <u>BERMAD</u>

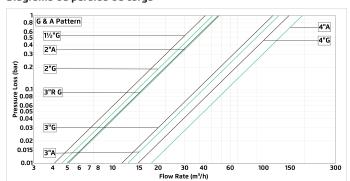


| Tamaño     | Forma   | Conexión  | Peso (Kg) | L (mm) | H (mm) | h (mm) | W   | CCDV (Lit) | KV  |
|------------|---------|-----------|-----------|--------|--------|--------|-----|------------|-----|
| 1½" ; DN40 | Globo   | Rosca     | 7.2       | 250    | 270    | 95     | 143 | 0.16       | 41  |
| 2" ; DN50  | Globo   | Rosca     | 7.3       | 250    | 277    | 95     | 143 | 0.16       | 46  |
| 2" ; DN50  | Angular | Rosca     | 8.1       | 120    | 353    | 155    | 143 | 0.16       | 51  |
| 3"R; DN80R | Globo   | Rosca     | 7.3       | 250    | 277    | 79     | 143 | 0.16       | 50  |
| 3"R; DN80R | Globo   | Embridada | 16        | 310    | 298    | 100    | 200 | 0.16       | 50  |
| 3"; DN80   | Globo   | Embridada | 23        | 300    | 382    | 123    | 210 | 0.49       | 115 |
| 3"; DN80   | Angular | Embridada | 25.8      | 150    | 402    | 196    | 210 | 0.49       | 126 |
| 4" ; DN100 | Globo   | Embridada | 31        | 350    | 447    | 137    | 250 | 1          | 147 |
| 4" ; DN100 | Angular | Embridada | 36.1      | 180    | 481    | 225    | 250 | 1          | 180 |

VDCC = Volumen de descarga (desplazamiento) en la cámara de control • Rosca = BSP y estándar americano NPT disponibles.

### Propiedades de flujo

| Tamaño                             | Precisión | DN40  | DN50 | DN80R | DN80 | DN100 |
|------------------------------------|-----------|-------|------|-------|------|-------|
| Q @ (m³/h)                         |           | 11/2" | 2"   | 3"R   | 3"   | 4"    |
| Q1 Caudal mínimo                   | ±5%       | 0.8   | 0.8  | 1.2   | 1.2  | 1.8   |
| Q2 Caudal de<br>transición         | ±2%       | 1.3   | 1.3  | 3     | 3    | 4.5   |
| Q3 Caudal<br>Permanente            | ±2%       | 25    | 40   | 100   | 100  | 160   |
| Q4 Caudal máximo<br>(tiempo corto) | ±2%       | 31    | 50   | 125   | 125  | 200   |


<sup>\*</sup>ISO 4604

## Opciones de pulso

| Tipo de registro  | Electrónico  |      |     |      |  |
|-------------------|--------------|------|-----|------|--|
| Tamaño            | Un pulso por |      |     |      |  |
|                   | 10L          | 100L | 1m³ | 10m³ |  |
| 1½"-4" : DN40-100 | <b>√</b>     | 1    | 1   |      |  |

• Pulso de 10 L adecuado para caudales de hasta 180 m³/h.

### Diagrama de pérdida de carga



### Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h \otimes \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$



#### www.bermad.com