

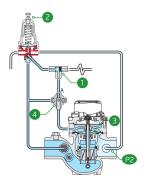
HIDRÓMETRO REDUCTOR DE PRESIÓN, CONTROLADO HIDRÁULICAMENTE

Model IR-920-ME-50-3W-KXZ

El hidrómetro reductor de presión BERMAD con selector manual y control remoto hidráulico combina un medidor de caudal de turbina tipo Woltman con una válvula de control hidráulica, accionada por diafragma. Funcionando tanto como medidor de caudal principal y como válvula reductora de presión, reduce una presión aguas arriba más alta a una presión aguas abajo constante más baja o se abre completamente cuando la presión de la línea cae por debajo de los valores establecidos. El hidrómetro cuenta con un registro electrónico para una medición precisa de volumen y caudal, y una salida de pulsos para un monitoreo y control mejorados.

- [1] Válvula de aire combinada Modelo IR-C30
- [2] Válvula reductora de presión Modelo IR-12T-55-3W-X
- [3] Hidrómetro BERMAD modelo IR-900-M0-Z
- [4] RTU- unidad terminal remota

Características y ventajas


- Válvula de control y caudalimetro integrado "todo en uno"
 Ahorra espacio, costes y mantenimiento
- Accionado por la presión de la línea, encendido/apagado controlado hidráulicamente
 - Protege los sistemas aguas abajo
 - Se abre completamente en caso de caída de la presión
- Transmision magnética con registro electrónico universal de BERMAD
 - Soporta unidades de medida métricas e imperiales
 - Visualización instantánea del caudal
 - Indicación de flujo hacia adelante y hacia atrás
 - Capacidades de registro de datos
 - Velocidad de salida de pulsos rápida
- Enderezadores Internos de flujo de Entrada y de Salida
 - Ahorra distancias de enderezamiento
 - Mantiene la precisión
- Diseño de facil manejo
 - Fácil ajuste de presión
 - Inspección y mantenimiento sencillos en línea

Aplicaciones típicas

- Sistemas de riego automatizados
- Lectura remota de datos de flujo
- Monitorización de flujo y control de fugas
- Sistemas reductores de presión
- Sistemas sujetos a fluctuaciones en la presión de suministro
- Centros de distribución
- Sistemas de Riego Volumétrico

Operación:

La "T" selectora [] conecta hidráulicamente el Piloto Reductor de Presión (PRP) [2] con la Cámara de Control [3] del Hidrómetro a través del Selector Manual [4]. El PRP ordena al Hidrómetro que cierre cuando la presión aguas abajo [P2] supera el valor de ajuste y que abra completamente cuando disminuye. Ante una orden de aumento de presión, la "T" selectora cambia automáticamente, presurizando la cámara de control y cerrando el Hidrómetro. El Selector Manual [4] permite el cierre local.

IR-920-MF-50-3W-KY7

Datos técnicos

Presión nominal:

10 bar

Presiones de trabajo:

0.5-10 bar

Materiales

Cuerpo y tapa: Hierro dúctil Diafragma: NR, Nylon reforzado Juntas: NR, Nylon reforzado

Resorte (muelle): Acero

inoxidable

Internas: Acero inoxidable y nylon reforzado con plástico Acelerador: Polipropileno Pivotes y rodamientos:

Polipropileno

*Otros materiales están disponibles a pedido

Especificaciones técnicas

Consulte la página completa de ingeniería de <u>BERMAD</u> acerca de otras formas y tipos de conectores.

Accesorios del circuito de control

Piloto Reductor: PC-SHARP-

X-P

Resorte (muelle)	Color del resorte	rango de ajuste
J	Verde	0.2-1.7 bar
K	Gris	0.5-3.0 bar
N	Natural	0.8-6.5 bar
V	Azul y blanco	1.0-10.0 bar

Resorte estándar - marcado en negrita

Tuberías y conectores:

Polietileno

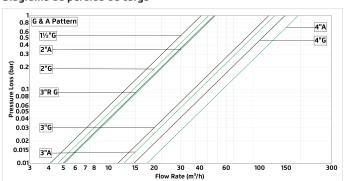
H	h	H	H
<u>+</u>	W	11 0 1	

Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Globo	Rosca	7.2	250	270	95	143	0.16	41
2" ; DN50	Globo	Rosca	7.3	250	277	95	143	0.16	46
2" ; DN50	Angular	Rosca	8.1	120	353	155	143	0.16	51
3"R; DN80R	Globo	Rosca	7.3	250	277	79	143	0.16	50
3"R; DN80R	Globo	Embridada	16	310	298	100	200	0.16	50
3"; DN80	Globo	Embridada	23	300	382	123	210	0.49	115
3"; DN80	Angular	Embridada	25.8	150	402	196	210	0.49	126
4"; DN100	Globo	Embridada	31	350	447	137	250	1	147
4"; DN100	Angular	Embridada	36.1	180	481	225	250	1	180

VDCC = Volumen de descarga (desplazamiento) en la cámara de control • Rosca = BSP y estándar americano NPT disponibles.

Propiedades de flujo

Tamaño Q @ (m³/h)	Precisión	DN40 1½"	DN50 2"	DN80R 3"R	DN80 3"	DN100 4"
Q1 Caudal mínimo	±5%	0.8	0.8	1.2	1.2	1.8
Q2 Caudal de transición	±2%	1.3	1.3	3	3	4.5
Q3 Caudal Permanente	±2%	25	40	100	100	160
Q4 Caudal máximo (tiempo corto)	±2%	31	50	125	125	200


^{*}ISO 4604

Opciones de pulso

Tipo de registro	Electrónico					
Tamaño	Un pulso por					
	10L	100L	1m³	10m³		
1½"-4" ; DN40-100	✓	✓	✓			

• Pulso de 10 L adecuado para caudales de hasta 180 m³/h.

Diagrama de pérdida de carga

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h @ \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

www.bermad.com