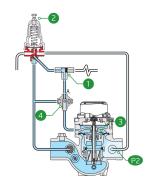
PRESSURE REDUCING HYDROMETER, HYDRAULIC CONTROLLED

Model IR-920-ME-50-3W-KXZ

The BERMAD pressure reducing Hydrometer with manual selector and hydraulic remote control combines a Woltman-type turbine water meter with a hydraulically operated, diaphragm-actuated control valve. Functioning as both a mainline flow meter and a pressure reducing valve, it reduces higher upstream pressure to a lower constant downstream pressure or opens fully when line pressure drops below settings. The Hydrometer features an electronic register for precise volume and flow measurement, and a pulse output for enhanced monitoring and control.

- [1] BERMAD Model IR-920-ME-50-3W-KXZ opens upon pressure drop command, establishes reduced pressure zone, and measures flow.
- [2] Combination Air Valve Model IR-C30
- [3] Quick Pressure Relief Valve Model IR-13Q-2W
- [4] Pressure Reducing Valve (Top Pilot) Model IR-12T-55-3W-X
- [5] Kinetic Air Valve Model IR-K10
- [6] Smart Irrigation Controller-OMEGA

Features & Benefits


- Integrated "All-in-One" Control Valve & Flow Meter
 - Saves space, cost and maintenance
- Line Pressure Driven, Hydraulically Controlled On/Off
 - Protects downstream systems
 - Opens fully upon line pressure drop
- Magnetic Drive with BERMAD Universal E-Register
 - Support metric & imperial units of measurement
 - Instant flow rate display
 - Forward and reverse flow indication
 - Data logging capabilities
 - Fast pulse output rate
- Internal Inlet & Outlet Flow Straighteners
 - Saves on straightening distances
 - Maintains accuracy
- User-Friendly Design
 - Easy pressure setting
 - Simple in-line inspection and service

Typical Applications

- Automated Irrigation Systems
- Remote Flow Data Read-Out
- Flow Monitoring & Leakage Control
- Pressure Reducing Systems
- Systems Subject to Varying Supply Pressure
- Distribution Centers
- Volumetric Irrigation Systems

Operation:

The Shuttle Valve 11 hydraulically connects the Pressure Reducing Pilot (PRP) [2] to the Control Chamber [3] of the Hydrometer through the Manual Selector [4]. The PRP commands the Hydrometer to throttle closed when Downstream Pressure [P2] rises above setting and to open fully when it drops. Upon pressure rise command, the Shuttle Valve switches automatically, pressurizing the control chamber and closing the Hydrometer. The Manual Selector [4] enables local closing.

Technical Data

Pressure Rating:

10 bar

Operating Pressure Range:

0.5-10 bar

Materials

Body & Cover: Ductile Iron **Diaphragm:** NR, Nylon fabric

reinforced

Seals: NR, Nylon fabric reinforced

Spring: Stainless Steel

Internals: Stainless Steel & Plastic

Reinforced Nylon Impeller: Polypropylene Pivots and Bearings:

Polypropylene

*Other materials are available on

request

Technical Specifications

For other patterns and end connection types, Please refer to <u>BERMAD</u> full engineering page.

Control Loop Accessories

PR Pilot: PC-SHARP-X-P

Spring	Spring Color	Setting range		
J	Green	0.2-1.7 bar		
K	Gray	0.5-3.0 bar		
N	Natural	0.8-6.5 bar		
V	Blue & White	1.0-10.0 bar		
Standard spring - marked in bold				

Tubing and Fittings:Polyethylene and
Polypropylene

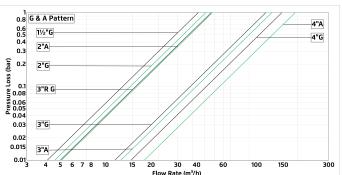
H	 h	H
1	←	←

Size	Pattern	End Connection	Weight (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Globe	Threaded	7.2	250	270	95	143	0.16	41
2" ; DN50	Globe	Threaded	7.3	250	277	95	143	0.16	46
2" ; DN50	Angle 90°	Threaded	8.1	120	353	155	143	0.16	51
3"R; DN80R	Globe	Threaded	7.3	250	277	79	143	0.16	50
3"R; DN80R	Globe	Flanged	16	310	298	100	200	0.16	50
3"; DN80	Globe	Flanged	23	300	382	123	210	0.49	115
3" ; DN80	Angle 90°	Flanged	25.8	150	402	196	210	0.49	126
4"; DN100	Globe	Flanged	31	350	447	137	250	1	147
4" ; DN100	Angle 90°	Flanged	36.1	180	481	225	250	1	180

CCDV = Control Chamber Displacement Volume • **Threaded** = BSP & NPT are available.

Flow Properties

Size	Accuracy	DN40	DN50	DN80R	DN80	DN100
Q @ (m³/h)		11/2"	2"	3"R	3"	4"
Q1 Minimum Flow	±5%	0.8	0.8	1.2	1.2	1.8
Q2 Transitional Flow	±2%	1.3	1.3	3	3	4.5
Q3 Permanent Flow	±2%	25	40	100	100	160
Q4 Maximum Flow (Short Time)	±2%	31	50	125	125	200


^{*}ISO 4604

Pulse Option

Register Type	Electronic				
Size	One pulse per				
	10L	100L	1m³	10m³	
1½"-4" ; DN40-100	✓	✓	✓		

• 10L pulse suitable for flows up to 180 m³/h.

Flow Chart

Differential Pressure & Flow Calculation

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h \otimes \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

[•] Extra length for male Threaded: 1½" Globe= 67(mm); 2" Globe & Angle= 77(mm)