

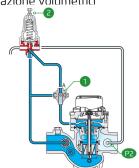
IDROMETRO RIDUZIONE PRESSIONE, 3-VIE

Model IR-920-MF-3W-KX7

L'idrometro riduttore di pressione BERMAD con selettore manuale combina un misuratore d'acqua a turbina tipo Woltman e una valvola di controllo azionata idraulicamente e comandata a diaframma. Funziona sia come misuratore di portata principale che come valvola riduttrice di pressione, riducendo una pressione a monte più elevata a una pressione costante a valle e aprendosi completamente se la pressione di linea scende al di sotto del valore di regolazione. L'idrometro è dotato di un registro elettronico accoppiato magneticamente e sigillato sottovuoto per una misurazione precisa di volume e portata, e include un'uscita a impulsi per un monitoraggio e un controllo avanzati.

[1] Il modello BERMAD IR-920-ME-3W-KXZ crea una zona a pressione ridotta, proteggendo le derivazioni e la linea di distribuzione.

Operazioni:


Quando il Selettore Manuale 🔟 è impostato su AUTO, l'idrometro si apre e il Pilota Riduttore di Pressione (PRP) [2] regola il flusso comandando l'idrometro a chiudersi parzialmente se la Pressione a Valle [P2] supera il valore impostato sul pilota e ad aprirsi completamente quando scende al di sotto di tale valore. Spostando il selettore su CHIUSA, l'idrometro si chiude completamente.

Caratteristiche e vantaggi

- Valvola di controllo e Misuratore di Flusso integrati «tutto in uno»
 - Consente di risparmiare spazio, costi e manutenzione
- Controllo della Pressione Idraulica
 - Azionata dalla pressione di linea
 - Protegge i sistemi a valle
 - Si apre completamente in risposta a una caduta di pressione di linea
- Unità magnetica con registro elettronico universale BERMAD
 - Supporta unità di misura metriche e imperiali
 - Visualizzazione istantanea della portata
 - Indicazione del flusso diretto e inverso
 - Capacità di registrazione dati
 - _x000D_ Emissione impulsi rapida_x000D_
 - Raddrizzatori di Flusso Interni in Ingresso e Uscita
 - Risparmia sulle distanze di raddrizzamento
 - Precisione costante
 - Design intuitivo
 - Facile impostazione della pressione
 - Ispezione e assistenza in linea semplici

Applicazioni tipiche

- Lettura remota dei dati del Flusso
- Monitoraggio del flusso e controllo delle perdite
- Riduttore di Pressione
- Sistemi Soggetti a Variazioni della Pressione di Alimentazione
- Sistemi di irrigazione volumetrici

Pressione d'esercizio: 10 bar

Dati Tecnici

Intervallo di Pressione

Specifiche Tecniche

Per altri modelli e tipi di connessioni terminali,

Consultare la pagina di progettazione completa di BERMAD.

Operativa: 0.5-10 bar

Materiali

Corpo e Coperchio: Ferro Duttile **Diaframma:** NR, Tessuto in nylon

rinforzato

Guarnizioni: NR, Tessuto in nylon

rinforzato

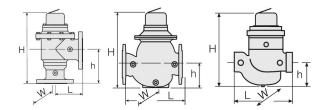
Molla: Acciaio Inox

Interni: Acciaio Inox e Nylon Rinforzato con plastica **Girante:** Polipropilene

Perni e cuscinetti: Polipropilene *Altri materiali sono disponibili su

richiesta

Accessori del Circuito


Pilota PRV: PC-SHARP-X-P

Molla	Colore Molla	Range di Regolazione
J		0.2-1.7 bar
K	Grigio	0.5-3.0 bar
N	Naturale	0.8-6.5 bar
V	Blu & Bianco	1.0-10.0 bar

Molla standard - indicata in grassetto _x000D_

Tubi e raccordi:

Polietilene e poliprolpilene

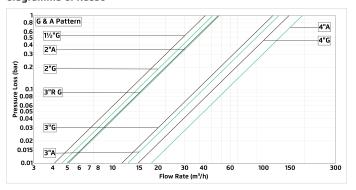
Dimensione	Modello	Connessione	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½"; DN40	Globo	Filettato	7.2	250	270	95	143	0.16	41
2"; DN50	Globo	Filettato	7.3	250	277	95	143	0.16	46
2" ; DN50	Angolo	Filettato	8.1	120	353	155	143	0.16	51
3"R; DN80R	Globo	Filettato	7.3	250	277	79	143	0.16	50
3"R; DN80R	Globo	Flangiato	16	310	298	100	200	0.16	50
3"; DN80	Globo	Flangiato	23	300	382	123	210	0.49	115
3"; DN80	Angolo	Flangiato	25.8	150	402	196	210	0.49	126
4"; DN100	Globo	Flangiato	31	350	447	137	250	1	147
4"; DN100	Angolo	Flangiato	36.1	180	481	225	250	1	180

CCDV = Volume di spostamento della camera di controllo • **Filettatura** = BSP e NPT disponibili.

x000D • Lunghezza extra per filettatura maschio: Globo da 1½" = 67 mm; Globo e angolo da 2" = 77 mm _x000D_

Proprietà del flusso

Dimensione Q @ (m³/h)	Accuratezza	DN40 1½"	DN50 2"	DN80R 3"R	3"	DN100 4"
Flusso minimo Q1	±5%	0.8	0.8	1.2	1.2	1.8
Flusso transitorio Q2	±2%	1.3	1.3	3	3	4.5
Flusso permanente Q3	±2%	25	40	100	100	160
Flusso massimo Q4 (breve periodo)	±2%	31	50	125	125	200


^{*}ISO 4604

Opzione ad impulso elettrico

Tipo di registro	Elettronico						
Dimensione	Un impulso per ogni						
	10L	100L	1m³	10m³			
1½"-4" ; DN40-100	✓	✓	✓				

• Impulso da 10 litri adatto per flussi fino a 180 m³/h.

diagramma di flusso

Differenziale di Pressione e Calcolo della Portata

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

www.bermad.com