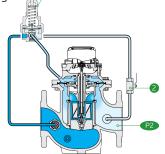

IDROMETRO RIDUZIONE PRESSIONE, 3-VIE

Model IR-920-M0-2W-R

L'Idrometro Riduttore di Pressione BERMAD combina un misuratore d'acqua a turbina tipo Woltman e una valvola di controllo azionata idraulicamente con attuatore a diaframma. Funziona sia come misuratore di portata principale che come valvola riduttrice di pressione, riducendo una pressione a monte più elevata a una pressione costante a valle e modulando l'apertura se la pressione della linea scende sotto il valore di regolazione. L'Idrometro è dotato di un registro magneticamente accoppiato e sigillato sottovuoto per una misurazione precisa del volume. Un'uscita a impulsi opzionale amplia le funzionalità del sistema.

- [1] Il modello BERMAD IR-920-M0-2W-R protegge il sistema e misura il flusso.
- [2] Valvola di sfioro BERMAD Modello IR-43Q-2W-R

Operazioni:


Il Pilota Riduttore di Pressione (PRP) 11 comanda l'idrometro a chiudersi quando la pressione a valle [P2] supera il valore di regolazione del pilota e a modulare l'apertura quando scende al di sotto di tale valore. La valvola a rubinetto a valle [2] consente la chiusura manuale.

Caratteristiche e vantaggi

- Valvola di controllo e Misuratore di Flusso integrati «tutto in uno»
 - Consente di risparmiare spazio, costi e manutenzione
- Controllo della Pressione Idraulica
 - Azionata dalla pressione di linea
 - Protegge a valle
- Azionamento magnetico con registro sigillato sottovuoto
 - Meccanismo di trasmissione senza acqua
 - Uscita a impulsi senza tensione con interruttore reed-switch
 - Diverse combinazioni di impulsi
- Raddrizzatori di Flusso Interni in Ingresso e Uscita
 - Risparmia sulle distanze di raddrizzamento
 - Precisione costante
- Dispositivo di calibrazione del Misuratore di Flusso integrato
 - Misurazione precisa
- Design intuitivo
 - Facile impostazione della pressione
 - Ispezione e assistenza in linea semplici
 - Facile aggiunta di funzioni di controllo

Applicazioni tipiche

- Sistemi di irrigazione automatizzati
- Riduttore di Pressione
- Lettura remota dei dati del Flusso
- Monitoraggio del flusso e controllo delle perdite
- Sistemi di irrigazio e/ Vulumetrici

Dati Tecnici

Pressione d'esercizio: 16 bar

Intervallo di Pressione Operativa:

Specifiche Tecniche

Per altri modelli e tipi di connessioni terminali,

Consultare la pagina di progettazione completa di BERMAD.

0.5-16 bar

Materiali

Corpo e Coperchio: Ferro Duttile **Diaframma:** NR, Tessuto in nylon

inforzato

Guarnizioni: NR, Tessuto in nylon

rinforzato

Molla: Acciaio Inox

Interni: Acciaio Inox e Nylon Rinforzato con plastica **Girante:** Polipropilene

Perni e cuscinetti: Polipropilene *Altri materiali sono disponibili su

richiesta

Accessori del Circuito

Pilota PRV: PC-20-A-MP

Molla	Colore Molla	Range di Regolazione			
N	Naturale	0.8-6.5 bar			
V	Blu & Bianco	1.0-10.0 bar			
Molla standard - indicata in grassetto					

x000D

Tubi e raccordi:

Plastica rinforzata e ottone

Dimensione	Modello	Connessione	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Globo	Filettato	7.2	250	270	95	143	0.16	41
2"; DN50	Globo	Filettato	7.3	250	277	95	143	0.16	46
2" ; DN50	Angolo	Filettato	8.1	120	353	155	143	0.16	51
3"R; DN80R	Globo	Filettato	7.3	250	277	79	143	0.16	50
3"R; DN80R	Globo	Flangiato	16	310	298	100	200	0.16	50
3"; DN80	Globo	Flangiato	23	300	382	123	210	0.49	115
3"; DN80	Angolo	Flangiato	25.8	150	402	196	210	0.49	126
4" ; DN100	Globo	Flangiato	31	350	447	137	250	1	147
4" ; DN100	Angolo	Flangiato	36.1	180	481	225	250	1	180
6" ; DN150	Globo	Flangiato	71	500	602	216	380	3.8	430
6" ; DN150	Angolo	Flangiato	76.7	250	585	306	380	3.8	473
8"; DN200	Globo	Flangiato	93	600	617	228	380	3.8	550
8"; DN200	Angolo	Flangiato	82.5	250	585	280	380	3.8	605

CCDV = Volume di spostamento della camera di controllo • Filettatura = BSP e NPT disponibili.

x000D • Lunghezza extra per filettatura maschio: Globo da 1½" = 67 mm; Globo e angolo da 2" = 77 mm _x000D_

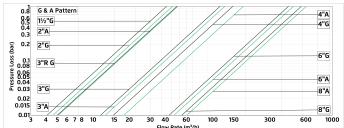
Proprietà del flusso

Dimensione Q @ (m³/h)	Accuratezza	DN40 1½"	DN50 2"	DN80R 3"R	DN80 3"	DN100 4"	DN150 6"	DN200 8"
Flusso minimo Q1	±5%	0.8	0.8	1.2	1.2	1.8	4	6.3
Flusso transitorio Q2	±2%	1.3	1.3	3	3	4.5	10	15.8
Flusso permanente Q3	±2%	25	40	100	100	160	250	400
Flusso massimo Q4 (breve periodo)	±2%	31	50	125	125	200	313	500

^{*}ISO 4604

Opzione ad impulso elettrico

Tipo di registro	Interruttore Reed - Sing olo erruttore Reed - CombinatoElettronico									
Dimensione	Un i	Un impulso per ogni		Un impuls	Un impulso per ogni					
Dimensione	10L	100L	1m³	10m³	10L+100L	1m³+10m³	10L	100L	1m³	10m³
1½"-4" ; DN40-100		✓	✓		✓		√	√	✓	
6"-10" : DN150-250			1	1		✓		1	1	1


- Impulso da 10 litri (disponibile solo con registro elettronico) adatto per flussi fino a 180 m³/h.
- Vengono trasmessi due impulsi paralleli. Altre frequenze del polso sono disponibili su richiesta.

Caratteristiche Aggiuntive

Codice	Descrizione			
ME	Registro elettronico (è disponibile il kit di aggiornamento)			

diagramma di flusso

Circuito a 2 vie "Perdita di Carico Aggiunta" (per "V" inferiore a 2 m/s): 0,3 bar

Differenziale di Pressione e Calcolo della Portata

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h @ \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

www.bermad.com

Le informazioni contenute nel presente documento possono essere modificate da BERMAD senza preavviso. BERMAD non può essere ritenuto responsabile per eventuali errori. © Copyright 2015-2025 BERMAD CS Ltd.

October 2025