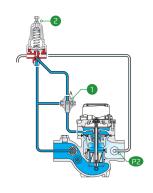
PRESSURE REDUCING HYDROMETER

Model IR-920-M0-3W-KXZ

The BERMAD Pressure Reducing Hydrometer with manual selector combines a Woltman-type turbine water meter and a hydraulically operated, diaphragm-actuated control valve. It functions as both a mainline flow meter and a pressure-reducing valve, reducing a higher upstream pressure to a constant downstream pressure and opening fully if line pressure drops below the setting. The Hydrometer features a magnetically coupled, vacuum-sealed register for precise volume measurement. An optional pulse output enhances system capabilities.

[1] BERMAD Model IR-920-M0-3W-KXZ establishes reduced pressure zone, protecting laterals and distribution line.

Features & Benefits


- Integrated "All-in-One" Control Valve & Flow Meter
 - Saves space, cost and maintenance
- Hydraulic Pressure Control
 - Line pressure driven
 - Protects downstream systems
 - Opens fully upon line pressure drop
- Magnetic Drive with Vacuum-Sealed Register
 - Water-free gear train mechanism
 - Reed-switch tension free pulse output
 - Various pulse combinations
- Internal Inlet & Outlet Flow Straighteners
 - Saves on straightening distances
 - Maintains accuracy
- Integrated Flow Metering Calibration Device
 - Precise measurement
- User-Friendly Design
 - Easy pressure setting
 - Simple in-line inspection and service
 - Easy addition of control features

Typical Applications

- Remote Flow Data Read-Out
- Flow Monitoring & Leakage Control
- Pressure Reducing Systems
- Systems Subject to Varying Supply Pressure
- Volumetric Irrigation Systems

Operation:

When the Manual Selector [1] is set to AUTO, the Hydrometer opens, and the Pressure Reducing Pilot (PRP) [2] regulates flow by commanding the Hydrometer to throttle closed if Downstream Pressure P2 rise above pilot setting and to open fully when it drops below setting. Switching the selector to CLOSE shuts the Hydrometer completely.

Technical Data

Pressure Rating:

150 psi

Operating Pressure Range:

7-150 psi

Materials

Body & Cover: Ductile Iron **Diaphragm:** NR, Nylon fabric

reinforced

Seals: NR, Nylon fabric reinforced

Spring: Stainless Steel

Internals: Stainless Steel & Plastic

Reinforced Nylon
Impeller: Polypropylene
Pivots and Bearings:
Polypropylene

*Other materials are available on

request

Technical Specifications

For other patterns and end connection types, Please refer to <u>BERMAD</u> full engineering page.

Control Loop Accessories

PR Pilot: PC-SHARP-X-P

Spring	Spring Color	Setting range	
J	Green	3-25 bar	
K	Gray	7-43 bar	
N Natural 12-95 psi			
V	Blue & White	15-150 bar	
Standard spring - marked in bold			

Tubing and Fittings: Polyethylene and

Polypropylene

idi.

H	h	HOOM
Jacob Control of the	←	<u>←</u> →

Size	Pattern	End Connection	Weight (Lb)	L (ln)	H (In)	h (ln)	W	CCDV (Gal)	cv
1½" ; DN40	Globe	Threaded	15.9	9%	10%	3¾	5%	0.04	47
2" ; DN50	Globe	Threaded	16.1	9%	10%	3¾	5%	0.04	53
2" ; DN50	Angle 90°	Threaded	17.8	4¾	13%	61/8	5%	0.04	59
3"R; DN80R	Globe	Threaded	16.1	9%	10%	31/8	5%	0.04	58
3"R; DN80R	Globe	Flanged	35.3	121/4	11¾	4	7%	0.04	58
3"; DN80	Globe	Flanged	50.7	11%	15	4%	81/4	0.13	133
3"; DN80	Angle 90°	Flanged	56.9	6	15%	7¾	81/4	0.13	146
4"; DN100	Globe	Flanged	68.3	13¾	17⅓	5%	9%	0.26	170
4" ; DN100	Angle 90°	Flanged	79.6	7½	19	8%	9%	0.26	208

CCDV = Control Chamber Displacement Volume • **Threaded** = BSP & NPT are available.

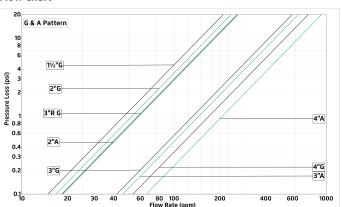
• Extra length for male Threaded: 1½" Globe= 2.6 (Inch) ; 2" Globe & Angle= 3 (Inch)

Flow Properties

Size Q @ (gpm)	Accuracy	DN40 1½"	DN50 2"	DN80R 3"R	DN80 3"	DN100 4"
Q1 Minimum Flow	±5%	3.5	3.5	5.3	5.3	7.9
Q2 Transitional Flow	±2%	5.7	5.7	13.2	13.2	19.8
Q3 Permanent Flow	±2%	110	176	440	440	704
Q4 Maximum Flow (Short Time)	±2%	136	220	550	550	880

*ISO 4604

Pulse Option


Register Type	Electronic				
Size	One pulse per				
3120	1 Gal	10 Gal	100 Gal	1000 Gal	
1½"-4" ; DN40-100	✓	✓	✓		

- 1 Gallon pulse (only available with electronic register) suitable for flows up to 790 qpm.
- Two parllel pulses are transmitted. other pulse rates are avaiable on request.

Additional Features

Code	Description
ME	Electronic register (upgrade kit is available)

Flow Chart

Differential Pressure & Flow Calculation

$$\Delta P = \left(\frac{Q}{CV}\right)^2$$
 $CV = gpm @ \Delta P \text{ of 1 psi}$ $Q = gpm$ $\Delta P = psi$

www.bermad.com