

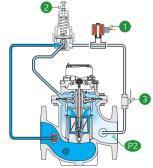
HIDRÓMETRO REDUCTOR DE PRESIÓN, CON CONTROL DE SOLENOIDE, 3 VÍAS

Model IR-920-M0-55-2W-R

El Hidrómetro Reductor de Presión BERMAD con control por solenoide combina un medidor de caudal de turbina tipo Woltman con una válvula de control hidráulica, accionada por diafragma. Funciona tanto como medidor de caudal principal como válvula reductora de presión, abriéndose o cerrándose en respuesta a una orden eléctrica y reduciendo la presión aguas arriba más alta a una presión aguas abajo constante y más baja. Cuenta con un registro sellado al vacío para una medición precisa del volumen acumulado. Se encuentra disponible una salida de pulsos opcional, que mejora aún más las capacidades del sistema.

[1] El modelo BERMAD IR-920-M0-55-2W-R se abre en respuesta a una señal eléctrica, estableciendo zonas de presión reducida y midiendo el caudal.

Operación:


Cuando el solenoide 🔟 está activado, el hidrómetro se abre y registra el caudal. El piloto reductor de presión (PRP) [2] estrangula el hidrómetro para cerrarlo si la presión aguas abajo [P2] supera el punto de ajuste y lo modula para abrirlo cuando la presión disminuye. Al desactivar el solenoide, el hidrómetro se cierra. El solenoide también cuenta con una apertura total por mando manual para su operación. Al cerrar la válvula de bola [3], se cierra el hidrómetro.

Características y ventajas

- Válvula de control y caudalimetro integrado "todo en uno"
 - Ahorra espacio, costes y mantenimiento
- Accionada por la presión de la línea, encendido/apagado con control eléctrico
 - Protege los sistemas aquas abajo
- Transmision magnética con registro sellado al vacío
 - Mecanismo de tren de engranajes seco
 - Salida de pulsos libre de tensión con interruptor de lengüeta
 - Diversas combinaciones de pulsos
- Enderezadores Internos de flujo de Entrada y de Salida
 - Ahorra distancias de enderezamiento
 - Mantiene la precisión
- Dispositivo de calibración de medición de caudal integrado
 - Medición precisa
- Diseño de facil manejo
 - Fácil ajuste de presión
 - Inspección y mantenimiento sencillos en línea

Aplicaciones típicas

- Sistemas de riego automatizados
- Lectura remota de datos de fluio
- Monitorización de flujo y control de fugas
- Parcelas remotas y/o elevadas
- Sistemas reductores de presión
- Centros de distribución
- Máguinas de

Datos técnicos

Presión nominal:

16 bar

Presiones de trabajo:

0.5-16 bar

Materiales

Cuerpo y tapa: Hierro dúctil Diafragma: NR, Nylon reforzado Juntas: NR, Nylon reforzado

Resorte (muelle): Acero

inoxidable

Internas: Acero inoxidable y nylon reforzado con plástico Acelerador: Polipropileno Pivotes y rodamientos:

Polipropileno

*Otros materiales están disponibles a pedido

Especificaciones técnicas

Consulte la página completa de ingeniería de <u>BERMAD</u> acerca de otras formas y tipos de conectores.

Accesorios del circuito de control

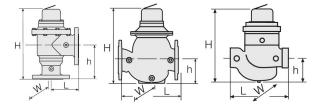
Piloto Reductor: PC-20-A-MP

Resorte (muelle)	Color del resorte	rango de ajuste
N	Natural	0.8-6.5 bar
V	Azul y blanco	1.0-10.0 bar

Resorte estándar - marcado en negrita

Tuberías y conectores:

Plástico reforzado y latón


Solenoide DC (CC):

S-400-3W

Solenoide de pulso (Latch):

S-402-3W M.B. S-982-3W M.B.

*Para otros solenoides y pilotos, consulte <u>BERMAD</u>

Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Globo	Rosca	7.2	250	270	95	143	0.16	41
2"; DN50	Globo	Rosca	7.3	250	277	95	143	0.16	46
2"; DN50	Angular	Rosca	8.1	120	353	155	143	0.16	51
3"R; DN80R	Globo	Rosca	7.3	250	277	79	143	0.16	50
3"R; DN80R	Globo	Embridada	16	310	298	100	200	0.16	50
3"; DN80	Globo	Embridada	23	300	382	123	210	0.49	115
3"; DN80	Angular	Embridada	25.8	150	402	196	210	0.49	126
4"; DN100	Globo	Embridada	31	350	447	137	250	1	147
4"; DN100	Angular	Embridada	36.1	180	481	225	250	1	180
6" ; DN150	Globo	Embridada	71	500	602	216	380	3.8	430
6"; DN150	Angular	Embridada	76.7	250	585	306	380	3.8	473
8"; DN200	Globo	Embridada	93	600	617	228	380	3.8	550
8"; DN200	Angular	Embridada	82.5	250	585	280	380	3.8	605

VDCC = Volumen de descarga (desplazamiento) en la cámara de control • Rosca = BSP y estándar americano NPT disponibles.

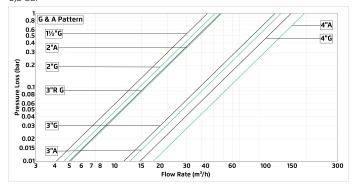
Propiedades de flujo

Tamaño Q @ (m³/h)	Precisión	DN40 1½"	DN50 2"	DN80R 3"R	DN80 3"	DN100 4"	DN150 6"	DN200 8"
Q1 Caudal mínimo	±5%	0.8	0.8	1.2	1.2	1.8	4	6.3
Q2 Caudal de transición	±2%	1.3	1.3	3	3	4.5	10	15.8
Q3 Caudal Permanente	±2%	25	40	100	100	160	250	400
Q4 Caudal máximo (tiempo corto)	±2%	31	50	125	125	200	313	500

^{*}ISO 4604

Opciones de pulso

Tipo de registro	Sensor REED - Simple			mple	Sensor REEI	o Electrónico				
Tamaño	Un pulso por		Un pulso por		Un pulso por					
101110110	10L	100L	1m³	10m³	10L+100L	1m³+10m³	10L	100L	1m³	10m³
1½"-4"; DN40-100		✓	✓		✓		✓	✓	✓	
6"-10"; DN150-250			✓	V		✓		✓	✓	V


- Pulso de 10 L (solo disponible con registro electrónico) adecuado para caudales de hasta 180 m³/h.
- Se transmiten dos pulsos paralelos. Otras frecuencias de pulso están disponibles bajo petición.

Características adicionales

Código	Descripción			
ME	Registro electrónico (kit de actualización disponible)			

Diagrama de pérdida de carga

Circuito de 2 vías "Pérdida de carga añadida" (para "V" por debajo de 2 m/s): 0,3 bar

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$

$$Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$$

$$Q = m^3/h$$

$$\Delta P = bar$$

www.bermad.com

La informacion contenida en este documento podrá ser modificada por BERMAD sin previo aviso. BERMAD no asuനുകூடுவது responsabilidad por los errores que pudiera contener. © Copyright 2015-2025 BERMAD CS Ltd