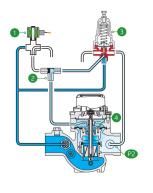


HIDRÓMETRO REDUCTOR DE PRESIÓN, CON CONTROL DE SOLENOIDE, 3 VÍAS

Model IR-920-M0-55-3W-KX

El hidrómetro reductor de presión BERMAD con control por solenoide combina un medidor de caudal de turbina tipo Woltman con una válvula de control hidráulica accionada por diafragma. Funciona tanto como medidor de caudal principal como válvula reductora de presión, abriéndose o cerrándose en respuesta a una orden eléctrica y reduciendo la presión aguas arriba más alta a una presión constante aquas abajo más baja, o abriéndose completamente cuando la presión cae por debajo del punto de ajuste. Cuenta con un registro sellado al vacío para una medición precisa del volumen acumulado. Se encuentra disponible una salida de pulsos opcional, que mejora aún más las capacidades

Características y ventajas


- Válvula de control y caudalimetro integrado "todo en uno" Ahorra espacio, costes y mantenimiento
- Accionada por la presión de la línea, encendido/apagado con control eléctrico
 - Protege los sistemas aguas abajo
- Transmision magnética con registro sellado al vacío
 - Mecanismo de tren de engranajes seco
 - Salida de pulsos libre de tensión con interruptor de lengüeta
 - Diversas combinaciones de pulsos
- Enderezadores Internos de flujo de Entrada y de Salida
 - Ahorra distancias de enderezamiento
 - Mantiene la precisión
- Dispositivo de calibración de medición de caudal integrado
 - Medición precisa
- Diseño de facil manejo
 - Fácil ajuste de presión
 - Inspección y mantenimiento sencillos en línea

Aplicaciones típicas

- Sistemas de riego automatizados
- Lectura remota de datos de flujo
- Monitorización de flujo y control de fugas
- Sistemas reductores de presión
- Sistemas sujetos a fluctuaciones en la presión de suministro
- Centros de distribución

Operación:

Cuando el Solenoide 🔟 se activa, la "T" selectora 🔁 conecta hidráulicamente el Piloto Reductor de Presión (PRP) 📵 a la Cámara de Control del Hidrómetro [4]. El PRP regula el Hidrómetro, estrangulándolo hasta cerrarlo si la presión aguas abajo [P2] supera el punto de ajuste y abriéndolo completamente cuando desciende por debajo del punto de ajuste. Cuando el Solenoide se desactiva, la "T" selectora cambia, dirigiendo la presión de mando a la cámara de control, lo que cierra el Hidrómetro. El solenoide también cuenta con una apertura y cierre por mando manual.

Serie 900 Reductoras de presión

Datos técnicos

Presión nominal:

10 bar

Presiones de trabajo:

0.5-10 bar

Materiales

Cuerpo y tapa: Hierro dúctil Diafragma: NR, Nylon reforzado Juntas: NR, Nylon reforzado

Resorte (muelle): Acero

inoxidable

Internas: Acero inoxidable y nylon reforzado con plástico Acelerador: Polipropileno Pivotes y rodamientos:

Polipropileno

*Otros materiales están disponibles a pedido

Accesorios del circuito de control

Piloto Reductor: PC-SHARP-

X-P

Resorte (muelle)	Color del resorte	rango de ajuste				
J	Verde	0.2-1.7 bar				
K	Gris	0.5-3.0 bar				
N	Natural	0.8-6.5 bar				
V	Azul y blanco	1.0-10.0 bar				

Resorte estándar - marcado en negrita

Tuberías y conectores:

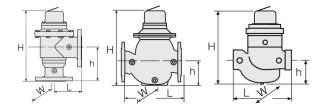
Polietileno

Solenoide AC (CA):

S-390-T-3W

Solenoide DC (CC):

S-390-T-3W


Solenoide de pulso (Latch):

S-392-T-3W P.B

*Para otros solenoides y pilotos, consulte <u>BERMAD</u>

Especificaciones técnicas

Consulte la página completa de ingeniería de <u>BERMAD</u> acerca de otras formas y tipos de conectores.

Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Globo	Rosca	7.2	250	270	95	143	0.16	41
2" ; DN50	Globo	Rosca	7.3	250	277	95	143	0.16	46
2" ; DN50	Angular	Rosca	8.1	120	353	155	143	0.16	51
3"R; DN80R	Globo	Rosca	7.3	250	277	79	143	0.16	50
3"R; DN80R	Globo	Embridada	16	310	298	100	200	0.16	50
3"; DN80	Globo	Embridada	23	300	382	123	210	0.49	115
3"; DN80	Angular	Embridada	25.8	150	402	196	210	0.49	126
4"; DN100	Globo	Embridada	31	350	447	137	250	1	147
4"; DN100	Angular	Embridada	36.1	180	481	225	250	1	180

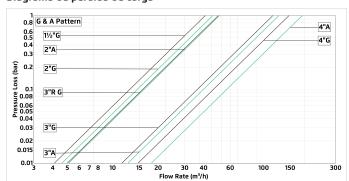
VDCC = Volumen de descarga (desplazamiento) en la cámara de control • Rosca = BSP y estándar americano NPT disponibles.

Propiedades de flujo

Tamaño Q @ (m³/h)	Precisión	DN40 1½"	DN50 2"	DN80R 3"R	DN80 3"	DN100 4"
Q1 Caudal mínimo	±5%	0.8	0.8	1.2	1.2	1.8
Q2 Caudal de transición	±2%	1.3	1.3	3	3	4.5
Q3 Caudal Permanente	±2%	25	40	100	100	160
Q4 Caudal máximo (tiempo corto)	±2%	31	50	125	125	200

^{*}ISO 4604

Opciones de pulso


Tipo de registro	Sens	Sensor REED - Simple Sensor REED - combina						do Electrónico			
Tamaño	Un pulso por			r	Un pulso por		Un pulso por				
Tamana	10L	100L	1m³	10m³	10L+100L	1m³+10m³	10L	100L	1m³	10m³	
1½"-4"; DN40-100		✓	✓		✓		✓	✓	✓		

- Pulso de 10 L (solo disponible con registro electrónico) adecuado para caudales de hasta 180 m³/h.
- Se transmiten dos pulsos paralelos. Otras frecuencias de pulso están disponibles bajo petición.

Características adicionales

Código	Descripción
ME	Registro electrónico (kit de actualización disponible)

Diagrama de pérdida de carga

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

www.bermad.com