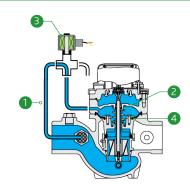
HIDRÓMETRO CON CONTROL DE SOLENOIDE

Model IR-910-ME-3W-KX

El Hidrómetro BERMAD con control por solenoide combina un medidor de caudal de turbina tipo Woltman y una válvula de control hidráulica accionada por diafragma. Funciona tanto como medidor de caudal principal y como válvula operada por solenoide, abriéndose y cerrándose en respuesta a una orden eléctrica de un sistema de control. El Hidrómetro cuenta con un registro electrónico sellado al vacío y acoplado magnéticamente para una medición precisa de volumen y caudal, e incluye una salida de pulsos para una supervisión y control mejorados.

- [1] Hidrómetro BERMAD IR-910-ME-3W-KX controlado por solenoide On/Off con salida de pulsos para caudal y volumen
- [2] RTU- unidad terminal remota
- [3] Combinación de ventosa modelo IR-C10
- [4] Hidrómetro BERMAD modelo IR 900 MO Z

Operación:


La presión de línea 🗓 se aplica a la Cámara de Control 🔁 a través del Solenoide de 3 vías normalmente abierto [3], generando una fuerza hidráulica que mueve el Conjunto de Diafragma [4] a la posición cerrada. Cuando el solenoide se activa eléctricamente, cambia para liberar la presión de la cámara de control, permitiendo que el Hidrómetro se abra y mida el caudal. El solenoide también cuenta con una apertura y cierre manual.

Características y ventajas

- Válvula de control y caudalimetro integrado "todo en uno"
 - Ahorra espacio, costes y mantenimiento
- Hidrómetro hidráulico con control por solenoide
 - Accionada por la presión en la línea
 - Encendido/apagado con control eléctrico
 - Apto también para sistemas remotos y/o elevados
- Transmision magnética con registro electrónico universal de BERMAD
 - Soporta unidades de medida métricas e imperiales
 - Visualización instantánea del caudal
 - Indicación de flujo hacia adelante y hacia atrás
 - Capacidades de registro de datos
 - Velocidad de salida de pulsos rápida
- Enderezadores Internos de flujo de Entrada y de Salida
 - Ahorra distancias de enderezamiento
 - Mantiene la precisión
- Diseño de facil manejo
 - Inspección y mantenimiento sencillos en línea

Aplicaciones típicas

- Sistemas de riego automatizados
- Sistemas remotos
- Lectura remota de datos de flujo
- Monitorización de flujo y control de fugas

Datos técnicos

Presión nominal:

10 bar

Presiones de trabajo:

0.5-10 bar

Materiales

Cuerpo y tapa: Hierro dúctil Diafragma: NR, Nylon reforzado Juntas: NR, Nylon reforzado

Resorte (muelle): Acero inoxidable

Internas: Acero inoxidable y nylon reforzado con plástico Acelerador: Polipropileno Pivotes y rodamientos:

Polipropileno

*Otros materiales están disponibles a pedido

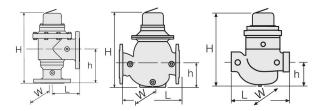
Especificaciones técnicas

Consulte la página completa de ingeniería de **BERMAD** acerca de otras formas y tipos de conectores.

Tuberías y conectores:

Polietileno

Solenoide AC (CA):


S-390-T-3W

Solenoide de pulso (Latch):

S-392-T-3W P.B S-982-3W P.B.

Accesorios del circuito de control

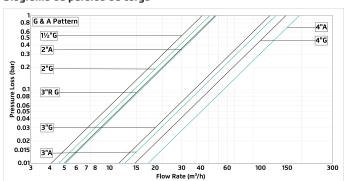
*Para otros solenoides, consulte a <u>BERMAD</u>

Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Globo	Rosca	7.2	250	270	95	143	0.16	41
2" ; DN50	Globo	Rosca	7.3	250	277	95	143	0.16	46
2" ; DN50	Angular	Rosca	8.1	120	353	155	143	0.16	51
3"R; DN80R	Globo	Rosca	7.3	250	277	79	143	0.16	50
3"R; DN80R	Globo	Embridada	16	310	298	100	200	0.16	50
3"; DN80	Globo	Embridada	23	300	382	123	210	0.49	115
3"; DN80	Angular	Embridada	25.8	150	402	196	210	0.49	126
4" ; DN100	Globo	Embridada	31	350	447	137	250	1	147
4" ; DN100	Angular	Embridada	36.1	180	481	225	250	1	180

VDCC = Volumen de descarga (desplazamiento) en la cámara de control • Rosca = BSP y estándar americano NPT disponibles.

Propiedades de flujo

Tamaño	Precisión	DN40	DN50	DN80R	DN80	DN100
Q @ (m³/h)		11/2"	2"	3"R	3"	4"
Q1 Caudal mínimo	±5%	0.8	0.8	1.2	1.2	1.8
Q2 Caudal de transición	±2%	1.3	1.3	3	3	4.5
Q3 Caudal Permanente	±2%	25	40	100	100	160
Q4 Caudal máximo (tiempo corto)	±2%	31	50	125	125	200


^{*}ISO 4604

Opciones de pulso

Tipo de registro		trónico					
Tamaño	Un pulso por						
Tamana	10L	100L	1m³	10m³			
1½"-10" : DN40-250	/	1	√				

• Pulso de 10 L adecuado para caudales de hasta 180 m³/h.

Diagrama de pérdida de carga

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

