HIDRÓMETRO CON CONTROL DE SOLENOIDE

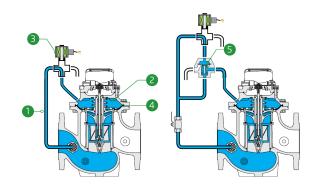
Model IR-910-M0-3W-RX

El Hidrómetro BERMAD con control por solenoide combina un medidor de caudal de turbina tipo Woltman y una válvula de control hidráulica accionada por diafragma. Funciona tanto como medidor de caudal principal y como válvula operada por solenoide, abriéndose y cerrándose en respuesta a una orden eléctrica de un sistema de control. El Hidrómetro cuenta con un registro acoplado magnéticamente y sellado al vacío para una medición precisa del volumen. Una salida de pulsos opcional mejora las capacidades del sistema.

- [1] El modelo BERMAD IR-910-M0-3W-RX se abre en respuesta a una señal eléctrica.
- [2] Hidrómetro BERMAD modelo IR-900-M0-Z
- [3] Combination Air Valve Model IR-C10
- [4] RTU- unidad terminal remota
- [5] Combination Air Valve Model IR-C10

Características y ventajas

- Válvula de control y caudalimetro integrado "todo en uno"
 - Ahorra espacio, costes y mantenimiento
- Hidrómetro hidráulico con control por solenoide
 - Accionada por la presión en la línea
 - Encendido/apagado con control eléctrico
- Transmision magnética con registro sellado al vacío
 - Mecanismo de tren de engranajes seco
 - Salida de pulsos libre de tensión con interruptor de lengüeta
 - Diversas combinaciones de pulsos
- Enderezadores Internos de flujo de Entrada y de Salida
 - Ahorra distancias de enderezamiento
 - Mantiene la precisión
- Dispositivo de calibración de medición de caudal integrado
 - Medición precisa
- Diseño de facil manejo
 - Inspección y mantenimiento sencillos en línea


Aplicaciones típicas

- Sistemas de riego automatizados
- Centros de distribución
- Lectura remota de datos de flujo
- Monitorización de flujo y control de fugas
- Sistemas de Riego Volumétrico

Operación:

La presión de línea 🗓 se aplica a la Cámara de Control 🔁 a través del Solenoide de 3 vías normalmente abierto [3], generando una fuerza hidráulica que mueve el Conjunto del Diafragma [4] a la posición cerrada. Cuando el solenoide se activa eléctricamente, conmuta para liberar la presión de la cámara de control, permitiendo que el Hidrómetro se abra y mida el caudal. El solenoide también cuenta con una apertura y cierre manual.

Para hidrómetros con diámetros de 6"-8" (DN150-200), una Válvula de Relé Hidráulico de 3 vías (3W-HRV) [5] acelera la respuesta del hidrómetro.

Las imágenes de este catálogo se incluyen solo a título de ilustración

a <u>BERMAD</u>

*Para otros solenoides, consulte

Datos técnicos

Presión nominal:

16 bar

Presiones de trabajo:

0.5-16 bar

Materiales

Cuerpo y tapa: Hierro dúctil Diafragma: NR, Nylon reforzado Juntas: NR, Nylon reforzado Resorte (muelle): Acero

inoxidable

Internas: Acero inoxidable y nylon reforzado con plástico Acelerador: Polipropileno Pivotes y rodamientos:

Polipropileno

*Otros materiales están disponibles a pedido

Especificaciones técnicas

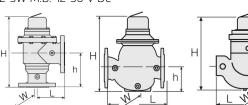
Consulte la página completa de ingeniería de **BERMAD** acerca de otras formas y tipos de conectores.

Accesorios del circuito de control

Tuberías y conectores: Plástico reforzado y latón

Solenoide AC (CA): S-400-3W-24VAC-R

Solenoide DC (CC):


S-400-3W-24VAC-D S-400-3W-24 V DC

Solenoide de pulso (Latch):

S-402-3W-M.B.-9-40 V DC

latch

S-982-3W M.B.-12-50 V DC latch

Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Globo	Rosca	7.2	250	270	95	143	0.16	41
2" ; DN50	Globo	Rosca	7.3	250	277	95	143	0.16	46
2" ; DN50	Angular	Rosca	8.1	120	353	155	143	0.16	51
3"R; DN80R	Globo	Rosca	7.3	250	277	79	143	0.16	50
3"R; DN80R	Globo	Embridada	16	310	298	100	200	0.16	50
3"; DN80	Globo	Embridada	23	300	382	123	210	0.49	115
3"; DN80	Angular	Embridada	25.8	150	402	196	210	0.49	126
4"; DN100	Globo	Embridada	31	350	447	137	250	1	147
4"; DN100	Angular	Embridada	36.1	180	481	225	250	1	180
6"; DN150	Globo	Embridada	71	500	602	216	380	3.8	430
6"; DN150	Angular	Embridada	76.7	250	585	306	380	3.8	473
8"; DN200	Globo	Embridada	93	600	617	228	380	3.8	550
8"; DN200	Angular	Embridada	82.5	250	585	280	380	3.8	605

VDCC = Volumen de descarga (desplazamiento) en la cámara de control • Rosca = BSP y estándar americano NPT disponibles.

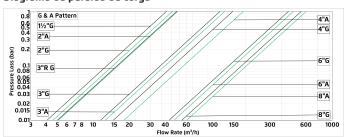
Propiedades de flujo

Tamaño Q @ (m³/h)	Precisión	DN40 1½"	DN50 2"	DN80R 3"R	3"	DN100 4"	DN150 6"	DN200 8"
Q1 Caudal mínimo	±5%	0.8	0.8	1.2	1.2	1.8	4	6.3
Q2 Caudal de transición	±2%	1.3	1.3	3	3	4.5	10	15.8
Q3 Caudal Permanente	±2%	25	40	100	100	160	250	400
Q4 Caudal máximo (tiempo corto)	±2%	31	50	125	125	200	313	500

^{*}ISO 4604

Opciones de pulso

Tipo de registro	Sensor REED - Simple Sensor REED - combinad							lo Electrónico			
Tamaño	Un pulso por			r	Un pul	Un pulso por					
Talliano	10L	100L	1m³	10m³	10L+100L	1m³+10m³	10L	100L	1m³	10m³	
1½"-4" ; DN40-100		✓	✓		✓		✓	✓	✓		
6"-10"; DN150-250			✓	V		✓		✓	✓	V	


- Pulso de 10 L (solo disponible con registro electrónico) adecuado para caudales de hasta 180 m^3/h .
- Se transmiten dos pulsos paralelos. Otras frecuencias de pulso están disponibles bajo petición.

Características adicionales

Código	Descripción	Rango de tamaños
ME	Registro electrónico (kit de actualización disponible)	1½"-8" / DN40-200

www.bermad.com

Diagrama de pérdida de carga

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h @ \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$