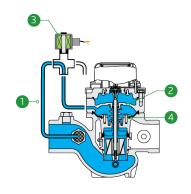
HIDRÓMETRO CON CONTROL DE SOLENOIDE

Model IR-910-M0-3W-KX

El Hidrómetro BERMAD con control por solenoide combina un medidor de caudal de turbina tipo Woltman y una válvula de control hidráulica accionada por diafragma. Funciona tanto como medidor de caudal principal y como válvula operada por solenoide, abriéndose y cerrándose en respuesta a una orden eléctrica de un sistema de control. El Hidrómetro cuenta con un registro acoplado magnéticamente y sellado al vacío para una medición precisa del volumen. Una salida de pulsos opcional mejora las capacidades del sistema.

[1] Los hidrómetros BERMAD IR-910-M0-3W-KX On/Off son controlados y transmiten datos de caudal mediante un solo controlador Omega

Combination Air Valve Model IR-C10


[4] Presión de Control [2] a través Combination Ar Valve Model IR-C10 generando una del Solenoide de 3 vias normalmente abierto 3 generando una fuerza hidráulica que mueve el Conjunto de Diafragma [4] a la posición cerrada. Cuando el solenoide se activa eléctricamente, cambia para liberar la presión de la cámara de control, permitiendo que el Hidrómetro se abra y mida el caudal. El solenoide también cuenta con una apertura total por mando manual para abrir y cerrar.

Características y ventajas

- Válvula de control y caudalimetro integrado "todo en uno"
 - Ahorra espacio, costes y mantenimiento
- Hidrómetro hidráulico con control por solenoide
 - Accionada por la presión en la línea
 - Encendido/apagado con control eléctrico
- Transmision magnética con registro sellado al vacío
 - Mecanismo de tren de engranajes seco
 - Salida de pulsos libre de tensión con interruptor de lengüeta
 - Diversas combinaciones de pulsos
- Enderezadores Internos de flujo de Entrada y de Salida
 - Ahorra distancias de enderezamiento
 - Mantiene la precisión
- Dispositivo de calibración de medición de caudal integrado
 - Medición precisa

Aplicaciones típicas

- Sistemas de riego automatizados
- Sistemas remotos y/o elevados
- Lectura remota de datos de flujo
- Monitorización de flujo y control de fugas

Datos técnicos

Presión nominal:

10 bar

Presiones de trabajo:

0.5-10 bar

Materiales

Cuerpo y tapa: Hierro dúctil **Diafragma:** NR, Nylon reforzado **Juntas:** NR, Nylon reforzado

Resorte (muelle): Acero inoxidable

Internas: Acero inoxidable y nylon reforzado con plástico Acelerador: Polipropileno Pivotes y rodamientos:

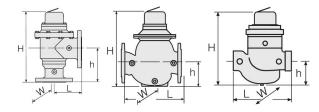
Polipropileno

*Otros materiales están disponibles a pedido

Especificaciones técnicas

Consulte la página completa de ingeniería de <u>BERMAD</u> acerca de otras formas y tipos de conectores.

Accesorios del circuito de control


Tuberías y conectores:

Polietileno

Solenoide AC (CA): S-390-T-3W

5-390-1-377

Solenoide de pulso (Latch): S-392-T-3W P.B S-982-3W P.B. *Para otros solenoides, consulte a <u>BERMAD</u>

Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Globo	Rosca	7.2	250	270	95	143	0.16	41
2" ; DN50	Globo	Rosca	7.3	250	277	95	143	0.16	46
2" ; DN50	Angular	Rosca	8.1	120	353	155	143	0.16	51
3"R; DN80R	Globo	Rosca	7.3	250	277	79	143	0.16	50
3"R; DN80R	Globo	Embridada	16	310	298	100	200	0.16	50
3"; DN80	Globo	Embridada	23	300	382	123	210	0.49	115
3"; DN80	Angular	Embridada	25.8	150	402	196	210	0.49	126
4" ; DN100	Globo	Embridada	31	350	447	137	250	1	147
4" ; DN100	Angular	Embridada	36.1	180	481	225	250	1	180

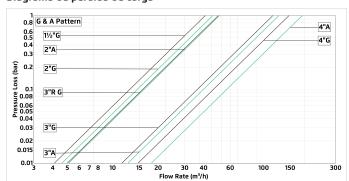
VDCC = Volumen de descarga (desplazamiento) en la cámara de control • Rosca = BSP y estándar americano NPT disponibles.

Propiedades de flujo

Tamaño Q @ (m³/h)	Precisión	DN40 1½"	DN50 2"	DN80R 3"R	DN80 3"	DN100 4"
Q1 Caudal mínimo	±5%	0.8	0.8	1.2	1.2	1.8
Q2 Caudal de transición	±2%	1.3	1.3	3	3	4.5
Q3 Caudal Permanente	±2%	25	40	100	100	160
Q4 Caudal máximo (tiempo corto)	±2%	31	50	125	125	200

^{*}ISO 4604

Opciones de pulso


Tipo de registro	Sens	Sensor REED - Simple Sensor REED - combination						o Electrónico			
Tamaño	Un pulso por			r	Un pul	Un pulso por					
Tomono	10L	100L	1m³	10m³	10L+100L	1m³+10m³	10L	100L	1m³	10m³	
1½"-4"; DN40-100		✓	✓		✓		✓	✓	✓		

- Pulso de 10 L (solo disponible con registro electrónico) adecuado para caudales de hasta 180 m³/h.
- Se transmiten dos pulsos paralelos. Otras frecuencias de pulso están disponibles bajo petición.

Características adicionales

Código	Descripción				
Z	Selector manual				
ME Registro electrónico (kit de actualización disponible)					

Diagrama de pérdida de carga

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^2 \qquad \begin{array}{c} Kv = m^3/h \text{ @ } \Delta P \text{ of 1 bar} \\ Q = m^3/h \\ \Delta P = \text{bar} \end{array}$$

www.bermad.com