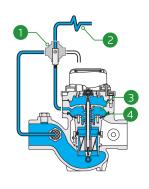
HIDRÓMETROS

Model IR-900-ME-3W-KXZ

El Hidrómetro BERMAD con selector manual combina un medidor de caudal de turbina tipo Woltman y una válvula de control hidráulica, accionada por diafragma. Funciona tanto como medidor de caudal y como válvula maestra, abriéndose o cerrándose en respuesta a una orden hidráulica local o remota. El Hidrómetro cuenta con un registro electrónico sellado al vacío y acoplado magnéticamente para una medición precisa de volumen y caudal, e incluye una salida de pulsos para un monitoreo y control mejorados.

- [1] El modelo IR-900-ME-3W-KXZ de BERMAD mide el caudal.
- [2] Válvula de aire combinada Modelo IR-C30
- [3] Válvula Reductora de Presión Modelo IR-120-50-XZ
- [4] Válvula de aire combinada modelo C10
- [5] RTU- unidad terminal remota

Características y ventajas


- Válvula de control y caudalimetro integrado "todo en uno"
 - Ahorra espacio, costes y mantenimiento
- Hidrómetro controlado hidráulicamente
 - Accionada por la presión en la línea
- Transmision magnética con registro electrónico universal de BERMAD
 - Soporta unidades de medida métricas e imperiales
 - Visualización instantánea del caudal
 - Indicación de flujo hacia adelante y hacia atrás
 - Capacidades de registro de datos
 - Velocidad de salida de pulsos rápida
- Enderezadores Internos de flujo de Entrada y de Salida
 - Ahorra distancias de enderezamiento
 - Mantiene la precisión
- Diseño de facil manejo
 - Inspección y mantenimiento sencillos en línea

Aplicaciones típicas

- Sistemas de riego automatizados
- Centros de distribución
- Lectura remota de datos de flujo
- Monitorización de flujo y control de fugas
- Sistemas de tratamiento de agua
- Sistemas de Riego Volumétrico

Operación:

Cuando el Selector Manual 1 está en AUTO, una orden hidráulica remota 2 regula la presión en la Cámara de Control 3 Al aumentar la presión de la orden remota, o al cambiar el Selector Manual a CERRADO, se genera una fuerza de cierre superior, desplazando el Conjunto del Diafragma 4 a la posición cerrada. Al liberar la presión de la Cámara de Control, ya sea mediante la orden remota o cambiando el Selector Manual a ABIERTO, la presión de la línea bajo el Conjunto del Diafragma permite abrir el Hidrómetro y medir el caudal.

Datos técnicos

Presión nominal:

10 bar

Presiones de trabajo:

0.5-10 bar

Materiales

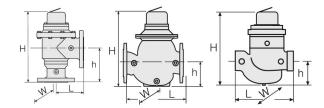
Cuerpo y tapa: Hierro dúctil Diafragma: NR, Nylon reforzado Juntas: NR, Nylon reforzado Resorte (muelle): Acero

inoxidable

Internas: Acero inoxidable y nylon reforzado con plástico Acelerador: Polipropileno Pivotes y rodamientos:

Polipropileno

*Otros materiales están disponibles a pedido


Especificaciones técnicas

Consulte la página completa de ingeniería de <u>BERMAD</u> acerca de otras formas y tipos de conectores.

Accesorios del circuito de control

Tuberías y conectores:

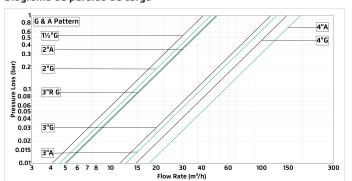
Polietileno

Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Globo	Rosca	7.2	250	270	95	143	0.16	41
2" ; DN50	Globo	Rosca	7.3	250	277	95	143	0.16	46
2" ; DN50	Angular	Rosca	8.1	120	353	155	143	0.16	51
3"R; DN80R	Globo	Rosca	7.3	250	277	79	143	0.16	50
3"R; DN80R	Globo	Embridada	16	310	298	100	200	0.16	50
3"; DN80	Globo	Embridada	23	300	382	123	210	0.49	115
3"; DN80	Angular	Embridada	25.8	150	402	196	210	0.49	126
4"; DN100	Globo	Embridada	31	350	447	137	250	1	147
4"; DN100	Angular	Embridada	36.1	180	481	225	250	1	180

VDCC = Volumen de descarga (desplazamiento) en la cámara de control • Rosca = BSP y estándar americano NPT disponibles.

Propiedades de flujo

Tamaño Q @ (m³/h)	Precisión	DN40 1½"	DN50 2"	DN80R 3"R	DN80 3"	DN100 4"
Q1 Caudal mínimo	±5%	0.8	0.8	1.2	1.2	1.8
Q2 Caudal de transición	±2%	1.3	1.3	3	3	4.5
Q3 Caudal Permanente	±2%	25	40	100	100	160
Q4 Caudal máximo (tiempo corto)	±2%	31	50	125	125	200


^{*}ISO 4604

Opciones de pulso

Tipo de registro							
Tamaño	Un pulso por						
Tamana	10L	100L	1m³	10m³			
1½"-4" : DN40-100	√	1	1				

• Pulso de 10 L adecuado para caudales de hasta 180 m³/h.

Diagrama de pérdida de carga

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h \otimes \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

