
HIDRÓMETROS

Transmisión magnética con registro magnético (M0), circuito de control y accesorios de materiales co

Model IR-900-M0-54-3W-KX

El hidrómetro BERMAD con relé hidráulico combina un medidor de caudal de turbina tipo Woltman y una válvula de control hidráulica accionada por diafragma. Funciona tanto como medidor de caudal en línea principal y como válvula normalmente cerrada, abriéndose en respuesta a una orden remota de aumento de presión y cerrándose cuando la orden está ausente. El hidrómetro cuenta con un registro sellado al vacío y acoplado magnéticamente para una medición precisa del volumen. Una salida de pulsos opcional mejora las capacidades del sistema.

[1] El modelo BERMAD IR-900-M0-54-3W-KX se abre por orden de aumento de presión, midiendo el caudal.

Operación:


La presión de línea 🗓 se aplica a la cámara de control 🔁 a través de la válvula relé hidráulica de 3 vías mantenida abierta (3W-HRV) [3]. Esto genera una fuerza de cierre superior que mueve el conjunto del diafragma [4] a una posición cerrada. Ante una orden de aumento de presión, la 3W-HRV conmuta, liberando la presión de la cámara de control. El hidrómetro entonces se abre, midiendo el caudal. La 3W-HRV también cuenta con apertura y cierre manual local.

Características y ventajas

- Válvula de control y caudalimetro integrado "todo en uno" Ahorra espacio, costes y mantenimiento
- Hidrómetro normalmente cerrado, controlado hidráulicamente
 - Accionada por la presión en la línea
 - Se cierra cuando falla la presión del comando
 - Amplifica y transmite comandos remotos débiles
 - Encendido/apagado controlado hidráulicamente
- Transmision magnética con registro sellado al vacío
 - Mecanismo de tren de engranajes seco
 - Salida de pulsos libre de tensión con interruptor de lengüeta
 - Diversas combinaciones de pulsos
- Enderezadores Internos de flujo de Entrada y de Salida
 - Ahorra distancias de enderezamiento
 - Mantiene la precisión
- Dispositivo de calibración de medición de caudal integrado
 - Medición precisa
- Diseño de facil manejo
 - Inspección y mantenimiento sencillos en línea

Aplicaciones típicas

- Sistemas de riego automatizados
- Lectura remota de datos de fluio
- Monitorizaci
- Sistemas de

Datos técnicos

Presión nominal:

10 bar

Presiones de trabajo:

0.5-10 bar

Materiales

Cuerpo y tapa: Hierro dúctil Diafragma: NR, Nylon reforzado Juntas: NR, Nylon reforzado Resorte (muelle): Acero

inoxidable

Internas: Acero inoxidable y nylon reforzado con plástico Acelerador: Polipropileno Pivotes y rodamientos:

Polipropileno

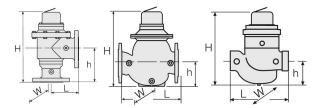
*Otros materiales están disponibles a pedido

Especificaciones técnicas

Consulte la página completa de ingeniería de <u>BERMAD</u> acerca de otras formas y tipos de conectores.

Accesorios del circuito de control

Tuberías y conectores:


Polietileno

*3W-HRV;

• Resorte estándar - 0-10

m'

• Opcional 10-20 m'

Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Globo	Rosca	7.2	250	270	95	143	0.16	41
2" ; DN50	Globo	Rosca	7.3	250	277	95	143	0.16	46
2" ; DN50	Angular	Rosca	8.1	120	353	155	143	0.16	51
3"R; DN80R	Globo	Rosca	7.3	250	277	79	143	0.16	50
3"R; DN80R	Globo	Embridada	16	310	298	100	200	0.16	50
3"; DN80	Globo	Embridada	23	300	382	123	210	0.49	115
3"; DN80	Angular	Embridada	25.8	150	402	196	210	0.49	126
4"; DN100	Globo	Embridada	31	350	447	137	250	1	147
4"; DN100	Angular	Embridada	36.1	180	481	225	250	1	180

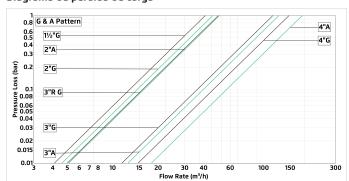
VDCC = Volumen de descarga (desplazamiento) en la cámara de control • Rosca = BSP y estándar americano NPT disponibles.

Propiedades de flujo

Tamaño Q @ (m³/h)	Precisión	DN40 1½"	DN50 2"	DN80R 3"R	DN80 3"	DN100 4"
Q1 Caudal mínimo	±5%	0.8	0.8	1.2	1.2	1.8
Q2 Caudal de transición	±2%	1.3	1.3	3	3	4.5
Q3 Caudal Permanente	±2%	25	40	100	100	160
Q4 Caudal máximo (tiempo corto)	±2%	31	50	125	125	200

^{*}ISO 4604

Opciones de pulso


Tipo de registro	Sensor REED - Simple Sensor REED - combinat					o Electrónico				
Tamaño	Un pulso por			r	Un pul	Un pulso por				
Tomono	10L	100L	1m³	10m³	10L+100L	1m³+10m³	10L	100L	1m³	10m³
1½"-4"; DN40-100		✓	✓		✓		✓	✓	✓	

- Pulso de 10 L (solo disponible con registro electrónico) adecuado para caudales de hasta 180 m³/h.
- Se transmiten dos pulsos paralelos. Otras frecuencias de pulso están disponibles bajo petición.

Características adicionales

Código	Descripción
ME	Registro electrónico (kit de actualización disponible)

Diagrama de pérdida de carga

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h @ \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

www.bermad.com