

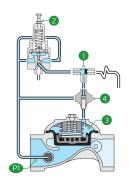
PRESSURE SUSTAINING VALVE

Model IR-430-50-3W-KXZ

The BERMAD Pressure Sustaining Valve is a hydraulically operated, diaphragm actuated control valve that sustains minimum preset upstream (back) pressure and opens fully when line pressure is above setting. It either opens or shuts in response to a remote pressure command.

[1] BERMAD Model IR-430-50-KXZ opens upon pressure drop command, sustains supply system pressure, and controls laterals and distribution line fill-up.

Features & Benefits


- Line Pressure Driven, Hydraulically Controlled On/Off
 - Prioritizes pressure zones
 - Controls system fill-up
 - Opens fully upon line pressure rise
- Advanced Hydro-Efficient Globe Design
 - Unobstructed flow path
 - Single moving part
 - High flow capacity
- Fully Supported & Balanced Diaphragm
 - Requires low actuation pressure
 - Excellent low flow regulation performances
 - Progressively restrains valve closing
 - Prevents diaphragm distortion
- User-Friendly Design
 - Easy pressure setting
 - Simple in-line inspection and service

Typical Applications

- Automated Irrigation Systems
- Line Fill-Up Control Solutions
- Line Emptying Prevention
- Infield Filters Backwash Pressure Sustaining
- Systems Subject to Varying Supply Pressure
- Distribution Centers

Operation:

The Shuttle Valve 11 hydraulically connects the Pressure Sustaining Pilot (PSP) [2] to the Valve Control Chamber [3] . The PSP commands the Valve to throttle closed should Upstream Pressure [P1] drop below setting, and to open fully when [P1] rises above setting. Upon pressure rise command, the shuttle valve automatically switches, allowing pressurization of the control chamber, which causes the main Valve to shut. The Manual Selector [4] enables local manual closing.

IR-430-50-3W-KX7

Pressure Sustaining

Technical Data

Pressure Rating:

150 psi

Operating Pressure Range:

7-150 psi

Materials

Body & Cover:

Cast Iron

Diaphragm:

NR, Nylon fabric reinforced

Spring:

Stainless Steel

*Other materials are available on request

Control Loop Accessories

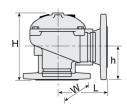
PR Pilot: PC-SHARP-X-P

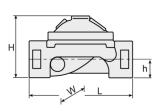
Pilot Spring Range:

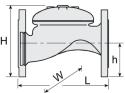
Spring	Spring Color	Setting range			
J	Green	3-25 psi			
K	Gray	7-43 psi			
N	Natural	12-95 psi			
V	Blue & White	15-150 psi			

Standard spring - marked in bold

Tubing and Fittings:

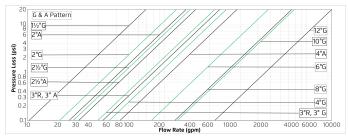

Polyethylene and Polypropylene


*For other pilots please consult BERMAD


Technical Specifications

For other end connection types,

Please refer to **BERMAD** full engineering page.


Size	Pattern	End Connection	Weight (Lb)	L (In)	H (In)	h (ln)	W	CCDV (Gal)	cv
1" ; DN25	Globe	Threaded	2.4	4%	2¾	1%	21/8	0.005	15
1½" ; DN40	Globe	Threaded	4.4	61/8	3%	1¼	3%	0.016	33
2" ; DN50	Globe	Threaded	8.8	71/s	41/2	11/2	4¾	0.03	66
2" ; DN50	Globe	Flanged	19.8	81/8	61/8	31/8	61/8	0.03	66
2" ; DN50	Globe	Grooved	11	81/8	41/4	11/4	4¾	0.03	66
2" ; DN50	Angle	Threaded	9.7	31/2	5%	21/2	4¾	0.03	82
2" ; DN50	Angle	Flanged	19.8	4¾	7%	3%	61/8	0.03	82
2½"; DN65	Globe	Threaded	12.6	8%	5¼	1%	51/8	0.05	90
2½" ; DN65	Globe	Flanged	23.1	81/8	7	31/2	7	0.05	90
2½" ; DN65	Angle	Threaded	12.8	43/8	71/8	3¾	5¼	0.05	102
3R"-; DN80R	Globe	Threaded	12.9	8%	51/2	21/8	51/8	0.08	157
3R"-; DN80R	Globe	Flanged	28	8%	7%	4	7%	0.08	157
3R"-; DN80R	Angle	Threaded	15.4	43/8	7	3%	5¼	0.08	176
3"; DN80	Globe	Threaded	28.7	101/8	61/2	21/4	6¾	0.08	157
3"; DN80	Globe	Flanged	41.9	9%	81/4	4	7%	0.08	157
3"; DN80	Globe	Grooved	23.4	9%	61/8	1%	6¾	0.08	157
3"; DN80	Angle	Threaded	24.3	43/8	71/4	3¼	6¾	0.08	176
3"; DN80	Angle	Flanged	37.5	61/8	81/8	4	7%	0.08	176
3"; DN80	Angle	Grooved	22.1	4¾	11	3%	6¾	0.08	176
4"; DN100	Globe	Flanged	61.7	12%	9%	41/2	8%	0.18	236
4" ; DN100	Globe	Grooved	35.7	12%	7%	21/2	8	0.18	236
4" ; DN100	Angle	Flanged	57.3	6%	8¾	41/2	8%	0.18	260
4"; DN100	Angle	Grooved	35.3	6¾	8¾	41/2	8%	0.18	260

CCDV = Control Chamber Displacement Volume • Threaded = BSP & NPT are available.

Additional Features

Code	Description	Size Range
I	Position Indicator Assembly	11/2"-4"
5	Plastic Test Point	11/2"-4"

Flow Chart

Differential Pressure & Flow Calculation

$$\Delta P = \left(\frac{Q}{CV}\right)^2$$
 $Cv = gpm @ \Delta P \text{ of 1 psi}$
 $Q = gpm$
 $\Delta P = psi$

www.bermad.com