

VÁLVULA REDUCTORA Y SOSTENEDORA DE PRESIÓN

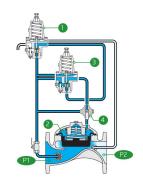
Modelo IR-423-3W-RXZ

La Válvula Reductora y Sostenedora de Presión Modelo IR-423-3W-RXZ de BERMAD es una válvula de control hidráulica, accionada por diafragma, con dos funciones independientes. Mantiene la presión mínima preestablecida aguas arriba independientemente de las variaciones de caudal o de la presión aguas abajo, y evita que la presión aguas abajo supere el máximo preestablecido, sin importar las fluctuaciones de caudal o el exceso de presión aguas arriba.

[1] El modelo BERMAD IR-423-3W-RXZ mantiene la presión aguas abajo de los filtros, asegurando una presión de retrolavado suficiente, previniendo el vaciado de la línea, controla el llenado del s

- [2] Válvulas de retrolavado de filtros Modelo IR-350
- [3] Hidrómetro BERMAD modelo IR-900-M0-Z
- [4] Combination Air Valve Model IR-C10

Características y ventajas


- Accionada por la presión en la línea, operación hidráulica
 - Prioriza las zonas de presión
 - Protege las zonas de baja presión
 - Controla el llenado del sistema
 - Evita el vaciado de las tuberías
 - Protege la bomba de la sobrecarga y la cavitación
 - Compensa durante la extracción de agua subterránea
 - Protege los sistemas aguas abajo
- Diseño avanzado hidroeficiente en forma de globo
 - Trayectoria de flujo sin obstrucciones
 - Una sola pieza móvil
 - Alta capacidad de flujo
- Diafragma totalmente equilibrado con soporte periférico
 - Baja presión de accionamiento
 - Excelente regulación con caudales bajos
 - Restringe progresivamente el cierre de la válvula.
 - Evita la distorsión del diafragma
- Diseño de facil manejo
 - Fácil ajuste de presión
 - Inspección y mantenimiento sencillos en línea
 - Fácil incorporación de funciones de control

Aplicaciones típicas

- Soluciones de control de llenado de líneas
- Sostenedora de presión de retrolavado del filtro
- Sistemas de circulación de bombas (con orificio)
- Sistemas reductores de presión
- Prevención de vaciado de líneas

Operación:

El Piloto Reductor de Presión (PRP) está conectado hidráulicamente a la Cámara de Control de la Válvula a través del Piloto Sostenedor de Presión (PSP) El PSP ordena que la válvula cierre modulando si la Presión de Entrada cae por debajo del ajuste. Cuando supera el ajuste, el PSP conmuta y permite que el PRP controle la válvula, ordenando la reducción de la Presión de Salida 21 Si la presión de línea se mantiene por encima del ajuste del PSP pero por debajo del ajuste del PRP, la válvula se abre completamente. El Selector Manual permite el cierre manual local.

IR-423-3W-RX7

Datos técnicos

Presión nominal:

16 bar

Presiones de trabajo:

Especificaciones técnicas

Consulte la página completa de ingeniería de <u>BERMAD</u> acerca de otras formas y tipos de conectores.

0.5-16 bar

Materiales

Cuerpo y tapa:

Hierro fundido (hasta 8") Hierro dúctil (10" y 12")

Diafragma:

NR, Nylon reforzado

Resorte (muelle):

Acero inoxidable

*Otros materiales están disponibles a pedido

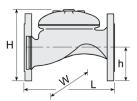
Accesorios del circuito de control

Piloto Reductor: PC-SHARP-

X-MP

Piloto Sostenedor: PC-

SHARP-X-MP

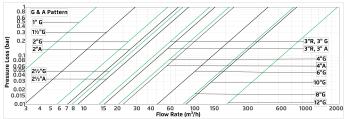

Gama de resorte de piloto:

	Resorte (muelle)	Color del resorte	rango de ajuste
	K	Gris	0.5-3.0 bar
	N	Natural	0.8-6.5 bar
	٧	Azul y blanco	1.0-10.0 bar
1	PÎ	Blageo	10-16.0 bar
	Resorte e	ado en negrita	

Tuberías y conectores:

Plástico reforzado y latón

*Para otros pilotos se recomienda consultar con BERMAD


Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
			, ,,	<u> </u>	, ,	, ,			
1" ; DN25	Globo	Rosca	1.1	115	68	34	71	0.02	13
1½" ; DN40	Globo	Rosca	2	153	87	29	98	0.06	29
2" ; DN50	Globo	Rosca	4	180	114	39	119	0.113	57
2" ; DN50	Globo	Embridada	9	205	155	78	155	0.113	57
2" ; DN50	Globo	Ranura (Victaulic)	5	205	108	31	119	0.113	57
2" ; DN50	Angular	Rosca	4.4	86	136	61	119	0.113	71
2" ; DN50	Angular	Embridada	9	120	160	83	155	0.113	71
2½"; DN65	Globo	Rosca	5.7	210	132	45	129	0.179	78
2½"; DN65	Globo	Embridada	10.5	205	178	89	178	0.179	78
2½"; DN65	Angular	Rosca	5.8	110	180	93	131	0.179	88
3R"-; DN80R	Globo	Rosca	5.8	210	140	53	129	0.291	136
3R"-; DN80R	Globo	Embridada	12.1	210	200	100	200	0.291	136
3R"-; DN80R	Angular	Rosca	7	110	178	91	131	0.291	152
3"; DN80	Globo	Rosca	13	255	165	55	170	0.291	136
3"; DN80	Globo	Embridada	19	250	210	100	200	0.291	136
3"; DN80	Globo	Ranura (Victaulic)	10.6	250	155	46	170	0.291	136
3"; DN80	Angular	Rosca	11	110	184	80	170	0.291	152
3"; DN80	Angular	Embridada	17	153	205	101	200	0.291	152
3"; DN80	Angular	Ranura (Victaulic)	10	120	194	90	170	0.291	152
4"; DN100	Globo	Embridada	28	320	242	112	223	0.668	204
4"; DN100	Globo	Ranura (Victaulic)	16.2	320	191	61	204	0.668	204
4" ; DN100	Angular	Embridada	26	160	223	112	223	0.668	225
4" ; DN100	Angular	Ranura (Victaulic)	16	160	223	112	204	0.668	225
6" ; DN150	Globo	Embridada	68	415	345	140	306	1.973	458
6" ; DN150	Globo	Ranura (Victaulic)	49	415	302	85	306	1.973	458
8" ; DN200	Globo	Embridada	125	500	430	170	365	3.858	781
10" ; DN250	Globo	Embridada	140	605	460	202	405	3.858	829
12" ; DN300	Globo	Embridada	290	725	635	242	580	13.75	1932

CCDV = Volumen de desplazamiento de la cámara de control • Rosca = BSP & NPT están disponibles.

Características adicionales

	Código	Descripción	Rango de tamaños
	F	Large control filter	1½"-12" / DN40-300
	I	Conjunto indicador de posición	1½"-12" / DN40-300
	М	Cierre mecánico	1½"-12" / DN40-300

Diagrama de pérdida de carga

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = \text{bar}$

www.bermad.com