

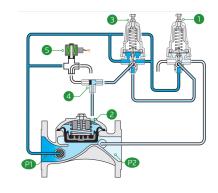
VÁLVULA REDUCTORA Y SOSTENEDORA DE PRESIÓN

Modelo IR-423-55-3W-RX

La Válvula Reductora y Sostenedora de Presión BERMAD con control por solenoide, Modelo IR-423-55-3W-RX, es una válvula de control hidráulica, accionada por diafragma, que realiza tres funciones independientes: sostiene la presión mínima aguas arriba preestablecida, reduce la presión aguas abajo a un máximo constante preajustado y abre o cierra en respuesta a una señal eléctrica.

- [1] El modelo BERMAD IR-423-55-3W-RX mantiene la presión aguas abajo de los filtros asegurando una presión de retrolavado suficiente, previniendo el vaciado de la línea, controla el llenado del
- [2] Válvulas de retrolavado de filtros Modelo IR-350
- [3] Hidrómetro BERMAD modelo IR-900-M0-Z
- [4] Combination Air Valve Model IR-C10

Características y ventajas


- Control hidráulico de presión con control de solenoide
 - Accionada por la presión en la línea
 - Mantiene la presión de la línea aguas arriba
 - Controla el llenado del sistema
 - Protege los sistemas aguas abajo
 - Encendido/apagado con control eléctrico
- Diseño avanzado hidroeficiente en forma de globo
 - Trayectoria de flujo sin obstrucciones
 - Una sola pieza móvil
 - Alta capacidad de flujo
- Diafragma totalmente equilibrado con soporte periférico
 - Requiere una baja presión de apertura y accionamiento
 - Excelente regulación con caudales bajos
 - Restringe progresivamente el cierre de la válvula.
 - Evita la distorsión del diafragma
- Diseño de facil manejo
 - Inspección y mantenimiento sencillos en línea

Aplicaciones típicas

- Sistemas de riego automatizados
- Parcelas remotas y/o elevadas
- Priorización de zonas de presión
- Control de llenado de la línea
- Prevención de vaciado de líneas
- Estaciones de reducción de presión
- Máquinas de Riego
- Sistemas de Riego con Presión de Suministro baja

Operación:

El Piloto Reductor de Presión (PRP) 1 está conectado hidráulicamente a la Cámara de Control de la Válvula 2 a través del Piloto Sostenedor de Presión (PSP) 3 y la "T" selectora 4 El PSP ordena el cierre modulante de la válvula si la Presión de Entrada 1 cae por debajo del ajuste. Cuando 1 supera el ajuste, el PSP conmuta y permite que el PRP controle la válvula, ordenando la reducción de la Presión de Salida 2 En respuesta a una señal eléctrica, el Solenoide 5 conmuta y presuriza la "T" selectora, que entonces bloquea los pilotos y transmite la presión de línea a la cámara de control, cerrando la válvula.

IR-423-55-3W-RX

Datos técnicos

Presión nominal:

16 bar

Presiones de trabajo:

0.5-16 bar

Materiales

Cuerpo y tapa:

Hierro fundido (hasta 8") Hierro dúctil (10" y 12")

Diafragma:

NR, Nylon reforzado

Resorte (muelle):

Acero inoxidable

*Otros materiales están disponibles a pedido

Accesorios del circuito de control

Piloto Reductor: PC-SHARP-

X-MP

Piloto Sostenedor: PC-

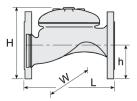
SHARP-X-MP

Gama de resorte de piloto:

Resorte (muelle)	Color del resorte	rango de ajuste		
K	Gris	0.5-3.0 bar		
N	Natural	0.8-6.5 bar		
V	Azul y blanco	1.0-10.0 bar		
ΡÎ	Blageo	Q -16.0 bar		
Posorta	ectándar - mari	ado an negri		

Tuberías y conectores:

Plástico reforzado y latón


Solenoide AC (CA):

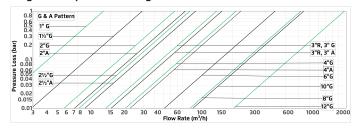
S-390-3W M.B.

Solenoide de pulso (Latch):

S-402-3W M.B.

*Para otros pilotos se recomienda consultar con BERMAD

Especificaciones técnicas Consulte la página completa de ingeniería de BERMAD acerca de otras formas y tipos de conectores. Tamaño Forma Conexión Peso (Kg) L (mm) H (mm) M (mm) W 1"; DN25 Globo Rosca 1.1 115 68 34 71


Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	ΚV
1" ; DN25	Globo	Rosca	1.1	115	68	34	71	0.02	13
1½" : DN40	Globo	Rosca	2	153	87	29	98	0.02	29
2" ; DN50	Globo	Rosca		180	114	39	119	0.06	
2" ; DN50	Globo	Embridada	4	205	155	78	155	0.113	57 57
			9						
2" ; DN50	Globo	Ranura (Victaulic)	5	205	108	31	119	0.113	57
2" ; DN50	Angular	Rosca	4.4	86	136	61	119	0.113	71
2" ; DN50	Angular	Embridada	9	120	160	83	155	0.113	71
2½" ; DN65	Globo	Rosca	5.7	210	132	45	129	0.179	78
2½" ; DN65	Globo	Embridada	10.5	205	178	89	178	0.179	78
2½" ; DN65	Angular	Rosca	5.8	110	180	93	131	0.179	88
3R"- ; DN80R	Globo	Rosca	5.8	210	140	53	129	0.291	136
3R"- ; DN80R	Globo	Embridada	12.1	210	200	100	200	0.291	136
3R"- ; DN80R	Angular	Rosca	7	110	178	91	131	0.291	152
3" ; DN80	Globo	Rosca	13	255	165	55	170	0.291	136
3" ; DN80	Globo	Embridada	19	250	210	100	200	0.291	136
3" ; DN80	Globo	Ranura (Victaulic)	10.6	250	155	46	170	0.291	136
3" ; DN80	Angular	Rosca	11	110	184	80	170	0.291	152
3" ; DN80	Angular	Embridada	17	153	205	101	200	0.291	152
3" ; DN80	Angular	Ranura (Victaulic)	10	120	194	90	170	0.291	152
4" ; DN100	Globo	Embridada	28	320	242	112	223	0.668	204
4" ; DN100	Globo	Ranura (Victaulic)	16.2	320	191	61	204	0.668	204
4" ; DN100	Angular	Embridada	26	160	223	112	223	0.668	225
4" ; DN100	Angular	Ranura (Victaulic)	16	160	223	112	204	0.668	225
6" ; DN150	Globo	Embridada	68	415	345	140	306	1.973	458
6" ; DN150	Globo	Ranura (Victaulic)	49	415	302	85	306	1.973	458
8" ; DN200	Globo	Embridada	125	500	430	170	365	3.858	781
10" ; DN250	Globo	Embridada	140	605	460	202	405	3.858	829
12" ; DN300	Globo	Embridada	290	725	635	242	580	13.75	1932

CCDV = Volumen de desplazamiento de la cámara de control • Rosca = BSP & NPT están disponibles.

Características adicionales

Código	Descripción	Rango de tamaños
F	Large control filter	1½"-12" / DN40-300
I	Conjunto indicador de posición	1½"-12" / DN40-300
М	Cierre mecánico	1½"-12" / DN40-300
Z	Selector manual	1½"-12" / DN40-300

Diagrama de pérdida de carga

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

www.bermad.com