

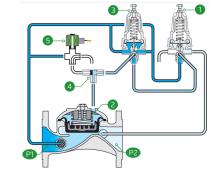
VALVOLA RIDUZIONE E SOSTEGNO **DELLA PRESSIONE**

Modello IR-423-55-3W-RX

La valvola di riduzione e mantenimento della pressione BERMAD con controllo a solenoide, modello IR-423-55-3W-RX, è una valvola di controllo azionata idraulicamente e comandata a diaframma che svolge tre funzioni indipendenti. Mantiene la pressione minima a monte preimpostata, riduce la pressione a valle a un valore massimo costante preimpostato e si apre o si chiude in risposta a un segnale elettrico.

- [1] Il modello BERMAD IR-423-55-3W-RX mantiene la pressione a valle dei filtri garantendo una pressione di controlavaggio sufficiente, prevenendo lo svuotamento della linea, controlla il riempim
- [2] Valvole di controlavaggio filtri Modello IR-350
- [3] Valvola dell'Aria Cinetica Modello IR-K10
- [4] Valvola dell'Aria Combinata Modello IR-C10

Caratteristiche e vantaggi


- Controllo idraulico della pressione con controllo a solenoide
 - Azionata dalla pressione di linea
 - Mantiene la pressione di linea a monte.
 - Controlla il riempimento del sistema
 - Protegge i sistemi a valle
 - Accensione/spegnimento a comando elettrico
- Design avanzato a globo idro-efficiente
 - Percorso di flusso senza ostacoli
 - Parte mobile singola
 - Elevata capacità di flusso
- Diaframma completamente supportato e bilanciato
 - Richiede una bassa pressione di apertura e azionamento
 - Eccellenti prestazioni di regolazione del flusso ridotto
 - Limita progressivamente la chiusura della valvola.
 - Previene la distorsione del diaframma
- Design intuitivo
 - Ispezione e assistenza in linea semplici

Applicazioni tipiche

- Sistemi di irrigazione automatizzati
- Trame remote e/o sopraelevate
- Assegnazione delle priorità alle zone di pressione
- Controllo del riempimento della linea
- Prevenzione dello svuotamento della linea
- Stazioni di Riduzione Pressione
- Macchine per l'irrigazione
- Sistemi di irrigazione a bassa pressione

Operazioni:

Il Pilota Riduttore di Pressione (PRP) 🗻 è collegato idraulicamente alla Camera di Controllo della Valvola 🛛 tramite il Pilota di Mantenimento della Pressione (PSP) 📵 e la Valvola Shuttle [4]. Il PSP comanda la valvola a farfalla di chiudersi qualora la Pressione a Monte [P1] scenda sotto il valore di regolazione. Quando [P1] supera il valore di regolazione, il PSP commuta e consente al PRP di controllare la valvola, comandandola a ridurre la Pressione a Valle [P2]. In risposta a un segnale elettrico, il Solenoide [5] commuta e pressurizza la valvola shuttle, che quindi blocca i piloti e trasmette la pressione di linea nella camera di controllo, chiudendo la valvola.

Tutte le immagini in questo catalogo sono solo a scopo illustrativo

IR-423-55-3W-RX

Dati Tecnici

Pressione d'esercizio:

16 bar

Intervallo di Pressione Operativa:

0.5-16 bar

Materiali

Corpo e Coperchio:

Ghisa (fino a 8") Ghisa sferoidale (10" e 12")

Diaframma:

NR, Tessuto in nylon rinforzato

Molla:

Acciaio Inox

*Altri materiali sono disponibili su richiesta

Accessori del Circuito

Pilota PRV: PC-SHARP-X-MP Pilota PSV: PC-SHARP-X-MP

Range molla del pilota:

Molla	Colore Molla	Range di Regolazione		
K	Grigio	0.5-3.0 bar		
N	Naturale	0.8-6.5 bar		
V	Blu & Bianco	1.0-10.0 bar		
Р	Bianco	1.0-16.0 bar		

Molla standard - indicata in grassetto

Tubi e raccordi:

Plastica rinforzata e ottone

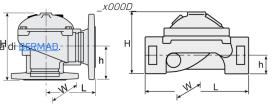
Solenoide AC:

S-390-3W M.B.

Solenoide DC bistabile:

S-402-3W M.B.

*Piloti PC-SHARP-X-MP per dimensioni fino a 4"

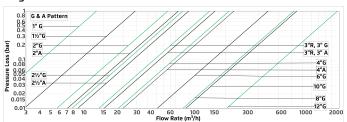

*Piloti X per dimensioni da 6" a

Specifiche Tecniche

Per altri tipi di connessioni terminali,

x000D Fare riferimento alla pagina di progettazione completa di

x000D


Dimensione	Modello	Connessione	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1" ; DN25	Globo	Filettato	1.1	115	68	34	71	0.02	13
1½" ; DN40	Globo	Filettato	2	153	87	29	98	0.06	29
2" ; DN50	Globo	Filettato	4	180	114	39	119	0.113	57
2" ; DN50	Globo	Flangiato	9	205	155	78	155	0.113	57
2" ; DN50	Globo	Scanalata-Victaulic	5	205	108	31	119	0.113	57
2" ; DN50	Angolo	Filettato	4.4	86	136	61	119	0.113	71
2" ; DN50	Angolo	Flangiato	9	120	160	83	155	0.113	71
2½" ; DN65	Globo	Filettato	5.7	210	132	45	129	0.179	78
2½" ; DN65	Globo	Flangiato	10.5	205	178	89	178	0.179	78
2½" ; DN65	Angolo	Filettato	5.8	110	180	93	131	0.179	88
3R"- ; DN80R	Globo	Filettato	5.8	210	140	53	129	0.291	136
3R"- ; DN80R	Globo	Flangiato	12.1	210	200	100	200	0.291	136
3R"- ; DN80R	Angolo	Filettato	7	110	178	91	131	0.291	152
3" ; DN80	Globo	Filettato	13	255	165	55	170	0.291	136
3" ; DN80	Globo	Flangiato	19	250	210	100	200	0.291	136
3" ; DN80	Globo	Scanalata-Victaulic	10.6	250	155	46	170	0.291	136
3" ; DN80	Angolo	Filettato	11	110	184	80	170	0.291	152
3" ; DN80	Angolo	Flangiato	17	153	205	101	200	0.291	152
3" ; DN80	Angolo	Scanalata-Victaulic	10	120	194	90	170	0.291	152
4" ; DN100	Globo	Flangiato	28	320	242	112	223	0.668	204
4" ; DN100	Globo	Scanalata-Victaulic	16.2	320	191	61	204	0.668	204
4" ; DN100	Angolo	Flangiato	26	160	223	112	223	0.668	225
4" ; DN100	Angolo	Scanalata-Victaulic	16	160	223	112	204	0.668	225
6" ; DN150	Globo	Flangiato	68	415	345	140	306	1.973	458
6" ; DN150	Globo	Scanalata-Victaulic	49	415	302	85	306	1.973	458
8" ; DN200	Globo	Flangiato	125	500	430	170	365	3.858	781
10" ; DN250	Globo	Flangiato	140	605	460	202	405	3.858	829
12" ; DN300	Globo	Flangiato	290	725	635	242	580	13.75	1932

CCDV = Volume di Spostamento della Camera di Controllo • Filettato = disponibili BSP e NPT.

Caratteristiche Aggiuntive

ı	Codice	Descrizione	Gamma di Dimensioni
-[F	Filtro ad Ampia Sezione	1½"-12" / DN40-300
	I	Indicatore di Posizionamento	1½"-12" / DN40-300
	М	Regolatore di flusso	1½"-12" / DN40-300
	Z	Selettore Manuale	1½"-12" / DN40-300

diagramma di flusso

Differenziale di Pressione e Calcolo della Portata

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

www.bermad.com

Le informazioni contenute nel presente documento possono essere modificate da BERMAD senza preavviso. BERMAD non può essere ritenuto responsabile per eventuali errori. © Copyright 2015-2025 BERMAD CS Ltd. October 2025