

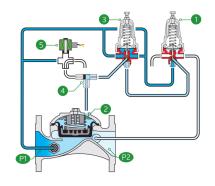
VANNE DE RÉDUCTION ET DE MAINTIEN DE PRESSION

Modèle IR-423-55-3W-KX

Le modèle BERMAD IR-423-55-3W-KX est une vanne de contrôle à commande hydraulique et à membrane, qui maintient une pression amont minimale préréglée et réduit la pression aval à un maximum constant préréglé. Elle s'ouvre ou se ferme en réponse à un signal électrique.

- [1] Le modèle BERMAD IR-423-55-3W-KX s'ouvre en réponse à un signal électrique, maintient la pression de contre-lavage des filtres et établit une zone de pression réduite.
- [2] Hydromètre Modèle IR-900-M0 Entraînement magnétique
- [3] Vanne d'air combinée modèle IR-C10
- [4] Vanne d'air combinée modèle IR-C30
- [5] Contrôleur d'irrigation intelligent OMEGA

Caractéristiques et avantages


- Commande par pression de ligne, activation/désactivation à commande électrique
 - Protège les systèmes en aval
 - Donne la priorité aux zones de pression
 - Remplissage du système de commandes
 - Maintient la pression de la conduite en amont
- Corps au design hydro-effiscient
 - Voie d'écoulement dégagée
 - Une seule pièce mobile
 - Capacité de débit élevée
- Diaphragme entièrement soutenu & équilibré
 - Nécessite une faible pression d'actionnement
 - Excellentes performances de régulation à faibles débits
 - Fermeture progressive de la vanne
 - Empêche la déformation du diaphragme
- Conception facile d'utilisation
 - Réglage facile de la pression
 - Inspection et entretien simples en ligne

Applications types

- modernisation du pilotage des réseaux d'irrigation
- Solutions de contrôle du remplissage des lignes
- Systèmes de réduction de pression
- Parcelles éloignées et/ou surélevées
- Maintien de la pression de lavage à contre-courant des filtres Infield
- Systèmes soumis à une pression d'alimentation variable
- Tête et poste de distribution d'irrigation

Fonctionnement:

Le pilote de réduction de pression (PRP) [1] est raccordé hydrauliquement à la chambre de contrôle de la vanne 2 via le pilote de maintien de pression (PMP) [3] et la vanne navette [4]. Le PMP commande la fermeture progressive de la vanne si la pression amont [P1] descend en dessous du réglage. Lorsque [P1] dépasse le réglage, le PMP bascule et permet au PRP de contrôler la vanne, lui ordonnant de réduire la pression aval [P2] à une valeur maximale prédéfinie. En réponse à un signal électrique, le solénoïde [5] bascule et met la vanne navette sous pression, ce qui bloque alors les pilotes et transmet la pression de la conduite dans la chambre de contrôle, fermant ainsi la vanne.

IR-423-55-3W-KX

Données techniques

Pression nominale: 10 bar

Plage de pression de fonctionnement:

Données techniques

Pour d'autres types de raccords d'extrémité,

veuillez consulter la page d'ingénierie complète de **BERMAD**.

0.5-10 bar

Matériaux

Corps et couvercle:

Fonte

Membrane:

NR, tissu en nylon renforcé

Ressort:

Acier inoxydable

*D'autres matériaux sont disponibles sur demande

Accessoires circuit de contrôle

Pilote de réduction de pression: PC-SHARP-X-P

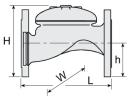
Pilote de maintien de pression: PC-SHARP-X-P

Plage de pression du pilote:

Ressort	Couleur du ressort	Plage de réglage		
J	Vert	0.2-1.7 bar		
K	Gris	0.5-3.0 bar		
N	Naturel	0.8-6.5 bar		
V	Bleu et blanc	9 -10.0 bar		
*Ressort	standard - ma	rqué en gras		

Tubes et raccords:

Polyéthylène et polypropylène

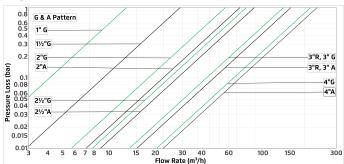

Solénoïde AC :

S-390-T-3W

Solénoïde à impulsion:

S-392-T-3W P.B

*Pour d'autres solénoïdes et pilotes, veuillez consulter BERMAD


Taille	Forme	Raccordement entrée/sortie	Poids (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1" ; DN25	Globe	Taraudée	1.1	115	68	34	71	0.02	13
1½" ; DN40	Globe	Taraudée	2	153	87	29	98	0.06	29
2" ; DN50	Globe	Taraudée	4	180	114	39	119	0.113	57
2" ; DN50	Globe	À bride	9	205	155	78	155	0.113	57
2" ; DN50	Globe	Rainuré	5	205	108	31	119	0.113	57
2" ; DN50	Angle	Taraudée	4.4	86	136	61	119	0.113	71
2" ; DN50	Angle	À bride	9	120	160	83	155	0.113	71
2½" ; DN65	Globe	Taraudée	5.7	210	132	45	129	0.179	78
2½" ; DN65	Globe	À bride	10.5	205	178	89	178	0.179	78
2½" ; DN65	Angle	Taraudée	5.8	110	180	93	131	0.179	88
3R"-; DN80R	Globe	Taraudée	5.8	210	140	53	129	0.291	136
3R"-; DN80R	Globe	À bride	12.1	210	200	100	200	0.291	136
3R"-; DN80R	Angle	Taraudée	7	110	178	91	131	0.291	152
3"; DN80	Globe	Taraudée	13	255	165	55	170	0.291	136
3"; DN80	Globe	À bride	19	250	210	100	200	0.291	136
3" ; DN80	Globe	Rainuré	10.6	250	155	46	170	0.291	136
3" ; DN80	Angle	Taraudée	11	110	184	80	170	0.291	152
3" ; DN80	Angle	À bride	17	153	205	101	200	0.291	152
3" ; DN80	Angle	Rainuré	10	120	194	90	170	0.291	152
4" ; DN100	Globe	À bride	28	320	242	112	223	0.668	204
4" ; DN100	Globe	Rainuré	16.2	320	191	61	204	0.668	204
4" ; DN100	Angle	À bride	26	160	223	112	223	0.668	225
4" ; DN100	Angle	Rainuré	16	160	223	112	204	0.668	225

CCDV = Volume de déplacement de la chambre de contrôle • Fileté = BSP & NPT sont disponibles.

Caractéristiques supplémentaires

Code	Description	Tailles disponibles
1	Assemblage d'indicateur de position	1½"-4" / DN40-100
М	Limiteur d'ouverture	1½"-4" / DN40-100
5	Prise pression plastique	1½"-4" / DN40-100

Plage de débit

Calcul de la pression différentielle et du débit

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h @ \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = \text{bar}$

www.bermad.com

Les informations contenues dans ce document peuvent etre modifiees par BERMAD sans preavis. BERMAD ne peut etre tenu responsable des erreurs eventuelles.

© Copyright 2015-2025 BERMAD CS Ltd