

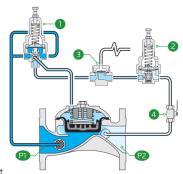
VANNE DE RÉDUCTION ET DE MAINTIEN DE PRESSION

Modèle IR-423-50-2W-R

La vanne de réduction et de maintien de pression BERMAD avec commande hydraulique à distance est une vanne de régulation à commande hydraulique et à membrane, dotée de trois fonctions indépendantes. Elle maintient une pression amont minimale préréglée, empêche la pression aval de dépasser la valeur maximale préréglée et s'ouvre ou se ferme en réponse à une consigne de pression à distance.

[1] Le modèle BERMAD IR-423-50-2W-R s'ouvre sur commande de chute de pression, maintient la pression de contre-lavage du filtre et réduit la pression du système.

Caractéristiques et avantages


- Régulation de la pression hydraulique
 - Piloté par la pression de ligne
 - Maintient la pression de la conduite en amont
 - Remplissage du système de commandes
 - Protège les systèmes en aval
 - Marche/arrêt à commande hydraulique
- Corps au design hydro-effiscient
 - Voie d'écoulement dégagée
 - Une seule pièce mobile
 - Capacité de débit élevée
- Diaphragme entièrement soutenu & équilibré
 - Nécessite une faible pression d'ouverture et d'actionnement
 - Excellentes performances de régulation à faibles débits
 - Fermeture progressive de la vanne
 - Empêche la déformation du diaphragme
- Inspection et entretien simples en ligne

Applications types

- modernisation du pilotage des réseaux d'irrigation
- Contrôle du remplissage de la ligne
- Prévention du vidage des lignes
- Systèmes de réduction de pression
- Machines pour l'irrigation
- Tête et poste de distribution d'irrigation
- Systèmes d'irrigation à basse pression

Fonctionnement:

Le Pilote de maintien de pression (PMP) 🚺 commande à la vanne de se fermer progressivement si la pression amont [P1] descend en dessous du réglage du pilote, et de s'ouvrir progressivement lorsqu'elle dépasse ce réglage. Lorsque [P1] est élevée, le Pilote de réduction de pression (PRP) [2] commande à la vanne d'empêcher la pression aval [P2] de dépasser le réglage du pilote. La vanne de relais hydraulique [3] se ferme sur commande de montée en pression, fermant la vanne principale. La vanne d'arrêt aval [4] permet la fermeture manuelle.

Toutes les images de ce catalogue sont données à titre d'illustration uniquement

Tubes et raccords:

Composite et laiton

MP pour tailles jusqu'à 4"

*Pilotes PC-20-A-MP; PC-30-A-

*Pilotes 2PBL ; 3PBL pour tailles

IR-423-50-2W-R

Données techniques

Pression nominale: 16 bar

Plage de pression de fonctionnement:

Données techniques

Pour d'autres types de raccords d'extrémité,

veuillez consulter la page d'ingénierie complète de **BERMAD**.

0.5-16 bar

Matériaux

Corps et couvercle:

Fonte (jusqu'à 8 pouces) Fonte ductile (10 et 12 pouces)

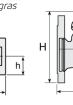
Membrane:

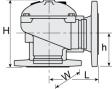
NR, tissu en nylon renforcé

Ressort:

Acier inoxydable

*D'autres matériaux sont disponibles sur demande


Accessoires circuit de contrôle

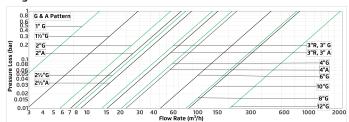

Pilote de réduction de pression: PC-20-A-MP

Pilote de maintien de pression: PC-30-A-MP

Plage de pression du pilote:

3 P P					
Ressort	Couleur du ressort	Plage de réglage			
N	Naturel	0.8-6.5 bar			
V	Bleu et blanc	1.0-10.0 bar			

, 7	'Ressort s	standard – marque en gras
		h


Taille	Forme	Raccordement entrée/sortie	Poids (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1" ; DN25	Globe	Taraudée	1.1	115	68	34	71	0.02	13
1½" ; DN40	Globe	Taraudée	2	153	87	29	98	0.06	29
2"; DN50	Globe	Taraudée	4	180	114	39	119	0.113	57
2"; DN50	Globe	À bride	9	205	155	78	155	0.113	57
2"; DN50	Globe	Rainuré	5	205	108	31	119	0.113	57
2" ; DN50	Angle	Taraudée	4.4	86	136	61	119	0.113	71
2" ; DN50	Angle	À bride	9	120	160	83	155	0.113	71
2½"; DN65	Globe	Taraudée	5.7	210	132	45	129	0.179	78
2½"; DN65	Globe	À bride	10.5	205	178	89	178	0.179	78
2½"; DN65	Angle	Taraudée	5.8	110	180	93	131	0.179	88
3R"-; DN80R	Globe	Taraudée	5.8	210	140	53	129	0.291	136
3R"-; DN80R	Globe	À bride	12.1	210	200	100	200	0.291	136
3R"-; DN80R	Angle	Taraudée	7	110	178	91	131	0.291	152
3"; DN80	Globe	Taraudée	13	255	165	55	170	0.291	136
3"; DN80	Globe	À bride	19	250	210	100	200	0.291	136
3"; DN80	Globe	Rainuré	10.6	250	155	46	170	0.291	136
3"; DN80	Angle	Taraudée	11	110	184	80	170	0.291	152
3"; DN80	Angle	À bride	17	153	205	101	200	0.291	152
3"; DN80	Angle	Rainuré	10	120	194	90	170	0.291	152
4"; DN100	Globe	À bride	28	320	242	112	223	0.668	204
4"; DN100	Globe	Rainuré	16.2	320	191	61	204	0.668	204
4" ; DN100	Angle	À bride	26	160	223	112	223	0.668	225
4"; DN100	Angle	Rainuré	16	160	223	112	204	0.668	225
6"; DN150	Globe	À bride	68	415	345	140	306	1.973	458
6" ; DN150	Globe	Rainuré	49	415	302	85	306	1.973	458
8"; DN200	Globe	À bride	125	500	430	170	365	3.858	781
10" ; DN250	Globe	À bride	140	605	460	202	405	3.858	829

CCDV = Volume de déplacement de la chambre de contrôle • Fileté = BSP & NPT sont disponibles.

290

Plage de débit

725

580

13.75

242

Circuit à 2 voies « Perte de charge ajoutée » (pour « V » inférieur à 2 m/s):

Calcul de la pression différentielle et du débit

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$ $Q = m^3/h$

12"; DN300

www.bermad.com

À bride

Globe

Les informations contenues dans ce document peuvent etre modifiees par BERMAD sans preavis. BERMAD ne peut etre tenu responsable des erreurs eventuelles.

© Copyright 2015-2025 BERMAD CS Ltd

1932