

Reducción y sostenimiento de presión

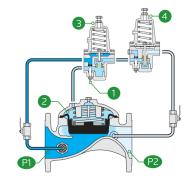
VÁLVULA REDUCTORA Y SOSTENEDORA DE PRESIÓN

Modelo IR-423-2W-R

La válvula reductora de presión Modelo 420-2W-R de BERMAD es una válvula de control accionada por diafragma y operada hidráulicamente, que reduce la presión superior aquas arriba a una presión inferior constante aguas abajo, independientemente de la fluctuación de la demanda o de la variación de la presión aquas arriba.

- [1] El modelo BERMAD IR-423-2W-R da prioridad a la zona de mayor presión, protege la zona de menor presión, controla el llenado del sistema y evita el vaciado de la línea.
- [2] Modelo de Filtro 70-F
- [3] Válvula de alivio rápido 73Q

Características y ventajas


- PRV y PSV accionados por la presión de la línea
 - Prioriza las zonas de presión
 - Protege las zonas de baja presión
 - Controla el llenado del sistema
 - Evita el vaciado de las tuberías
 - Protege la bomba de la sobrecarga y la cavitación
 - Compensa durante la extracción de agua subterránea
- Diseño avanzado hidroeficiente en forma de globo
 - Trayectoria de flujo sin obstrucciones
 - Una sola pieza móvil
 - Alta capacidad de flujo
- Diafragma totalmente equilibrado con soporte periférico
 - Baja presión de accionamiento
 - Excelente regulación con caudales bajos
 - Restringe progresivamente el cierre de la válvula.
 - Evita la distorsión del diafragma
- Diseño de facil manejo
 - Fácil ajuste de presión
 - Inspección y mantenimiento sencillos en línea

Aplicaciones típicas

- Líneas de suministro cuesta abajo
- Prevención de vaciado de líneas
- Priorización de zonas de mayor presión
- Protección de zona de presión más baja
- Control de llenado de la línea
- Protección contra sobrecarga y cavitación de la bomba
- Compensación de la reducción de nivel de la bomba de pozo profundo

Operación:

El Piloto Reductor de Presión (PRP) [1] está conectado hidráulicamente a la Cámara de Control de la Válvula [2] a través del Piloto Sostenedor de Presión (PSP) [3]. El PSP ordena que la válvula cierre modulando si la Presión de Entrada [P1] cae por debajo del ajuste. Cuando [P1] supera el ajuste, el PSP conmuta y permite que el PRP controle la válvula, ordenando que cierre modulando si la Presión de Salida [P2] supera el ajuste y que module abriendo cuando descienda por debajo del ajuste. La Llave de Paso aguas abajo [4] permite el cierre manual.

<u>BERMAD</u>

IR-423-2W-R

Datos técnicos

Presión nominal:

16 bar

Presiones de trabajo:

Especificaciones técnicas

Consulte la página completa de ingeniería de <u>BERMAD</u> acerca de otras formas y tipos de conectores.

0.5-16 bar

Materiales

Cuerpo y tapa:

Hierro fundido (hasta 8") Hierro dúctil (10" y 12")

Diafragma:

NR, Nylon reforzado

Resorte (muelle):

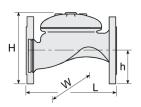
Acero inoxidable

*Otros materiales están disponibles a pedido

Accesorios del circuito de control

Piloto Reductor: PC-20-A-

MP


Piloto Sostenedor: PC-30-A-

MP

Gama de resorte de piloto:

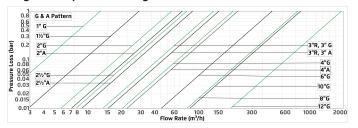
Resorte (muelle)		rango de ajuste			
N	Natural	0.8-6.5 bar			
V	Azul y blanco	1.0-10.0 bar			

Resorte estándar - marcado en negrita

Tuberías y conectores:

recomienda consultar con

*Para otros pilotos se


Plástico reforzado y latón

H	
L M pl L	

Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	w	CCDV (Lit)	KV
1" ; DN25	Globo	Rosca	1.1	115	68	34	71	0.02	13
1½" ; DN40	Globo	Rosca	2	153	87	29	98	0.06	29
2" ; DN50	Globo	Rosca	4	180	114	39	119	0.113	57
2" ; DN50	Globo	Embridada	9	205	155	78	155	0.113	57
2" ; DN50	Globo	Ranura (Victaulic)	5	205	108	31	119	0.113	57
2" ; DN50	Angular	Rosca	4.4	86	136	61	119	0.113	71
2" ; DN50	Angular	Embridada	9	120	160	83	155	0.113	71
2½" ; DN65	Globo	Rosca	5.7	210	132	45	129	0.179	78
2½" ; DN65	Globo	Embridada	10.5	205	178	89	178	0.179	78
2½" ; DN65	Angular	Rosca	5.8	110	180	93	131	0.179	88
3R"- ; DN80R	Globo	Rosca	5.8	210	140	53	129	0.291	136
3R"- ; DN80R	Globo	Embridada	12.1	210	200	100	200	0.291	136
3R"- ; DN80R	Angular	Rosca	7	110	178	91	131	0.291	152
3" ; DN80	Globo	Rosca	13	255	165	55	170	0.291	136
3" ; DN80	Globo	Embridada	19	250	210	100	200	0.291	136
3" ; DN80	Globo	Ranura (Victaulic)	10.6	250	155	46	170	0.291	136
3" ; DN80	Angular	Rosca	11	110	184	80	170	0.291	152
3" ; DN80	Angular	Embridada	17	153	205	101	200	0.291	152
3" ; DN80	Angular	Ranura (Victaulic)	10	120	194	90	170	0.291	152
4" ; DN100	Globo	Embridada	28	320	242	112	223	0.668	204
4" ; DN100	Globo	Ranura (Victaulic)	16.2	320	191	61	204	0.668	204
4" ; DN100	Angular	Embridada	26	160	223	112	223	0.668	225
4" ; DN100	Angular	Ranura (Victaulic)	16	160	223	112	204	0.668	225
6" ; DN150	Globo	Embridada	68	415	345	140	306	1.973	458
6" ; DN150	Globo	Ranura (Victaulic)	49	415	302	85	306	1.973	458
8" ; DN200	Globo	Embridada	125	500	430	170	365	3.858	781
10" ; DN250	Globo	Embridada	140	605	460	202	405	3.858	829
12" : DN300	Globo	Embridada	290	725	635	242	580	13.75	1932

CCDV = Volumen de desplazamiento de la cámara de control • Rosca = BSP & NPT están disponibles.

Diagrama de pérdida de carga

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h @ \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = \text{bar}$$

www.bermad.com

La informacion contenida en este documento podrá ser modificada por BERMAD sin previo aviso. BERMAD no asume ninguna responsabilidad por los errores que pudiera contener. © Copyright 2015-2025 BERMAD CS Ltd September 2025