

Válvula Redutora e Sustentadora de Pressão

VÁLVULA REDUTORA E SUSTENTADORA DE PRESSÃO

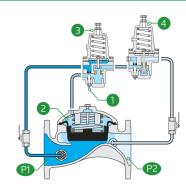
Modelo IR-423-2W-R

A Válvula Redutora e Sustentadora de Pressão BERMAD é uma válvula de controle operada hidraulicamente e acionada por diafragma, com duas funções independentes. Ela mantém a pressão mínima pré-ajustada a montante, independentemente do fluxo variável ou da pressão a jusante, e impede que a pressão a jusante ultrapasse o valor máximo pré-ajustado, independentemente do fluxo variável ou do excesso de pressão a montante.

- [1] O Modelo BERMAD IR-423-2W-R prioriza a zona de maior pressão, protege a zona de menor pressão, controla o enchimento do sistema e evita o esvaziamento da tubulação.
- [2] Modelo de Filtro 70-F
- [3] Válvula de Alívio Rápido 73Q

Benefícios e Características

- Válvula Redutora de Pressão (PRV) e Válvula Sustentadora de Pressão (PSV), Acionada por Pressão de Linha
 - Prioriza as zonas de pressão
 - Protege zonas de menor pressão
 - Controla o abastecimento do sistema
 - Evita o esvaziamento da tubulação
 - Protege a bomba contra sobrecarga e cavitação
 - Compensa durante o drawdown (período de fluxo) de água subterrânea
- Projeto de Válvula Globo Hidroeficiente Avançado
 - Percurso de fluxo sem obstruções
 - Peça móvel única
- Alta capacidade de fluxo
- Diafragma Totalmente Suportado e Balanceado
 - Requer baixa pressão de atuação
 - Excelentes desempenhos de regulagem em
 - Restringe progressivamente o fechamento da válvula
 - Evita a distorção do diafragma
- Design Fácil de Usar
 - Fácil configuração de pressão
 - Inspeção e Serviço Simples em Linha


Aplicações Típicas

- Linhas de Abastecimento em Declive
- Prevenção do Esvaziamento da Linha
- Priorização da Zona de Maior Pressão
- Proteção da Zona de Menor Pressão
- Controle de Abastecimento da Linha
- Proteção Contra Sobrecarga e Cavitação da Bomba
- Compensação de Drawdown (Período de Fluxo) da Bomba de Poço Profundo

Operação:

O Piloto Redutor de Pressão (PRP) [1] está conectado hidraulicamente à Câmara de Controle da Válvula [2] através do Piloto Sustentador de Pressão (PSP) 3. O PSP comanda o fechamento da válvula caso a Pressão a Montante [P1] caia abaixo do ajuste. Quando [P1] sobe acima do ajuste, o PSP alterna e permite que o PRP controle a válvula, comandando o fechamento caso a Pressão a Jusante [P2] suba acima do ajuste e a modulação de abertura quando cair abaixo do ajuste. O Registro a Jusante [4] permite o fechamento manual.

Todas as imagens neste catálogo são meramente ilustrativas

Dados Técnicos

Classe de Pressão:

16 bar

Faixa de Pressão Operacional:

0.5-16 bar

Materiais

Corpo e Tampa:

Ferro fundido (até 8") Ferro dúctil (10" e 12")

Diafragma:

NR, tecido de nylon reforçado

Mola:

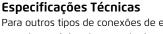
Aço inox

*Outros materiais estão disponíveis mediante solicitação

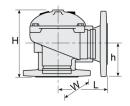
Acessórios do Circuito de Controle

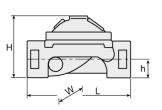
Piloto PR: PC-20-A-MP Piloto PS: PC-30-A-MP

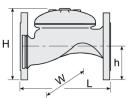
Faixa da Mola do Piloto:


Mola	Cor da Mola	Faixa de ajuste		
N		0.8-6.5 bar		
V		1.0-10.0 bar		

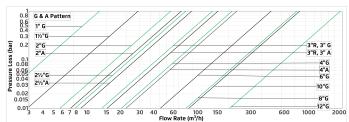
Mola padrão - marcada em negrito


Tubulação e Conexões:


Plástico Reforçado e Latão


*Pilotos PC-20-A-MP; PC-30-A-MP para tamanhos de até 4" *Pilotos 2PBL ; 3PBL para tamanhos de 6 - 12"

Para outros tipos de conexões de encaixe, consulte a página de engenharia completa da **BERMAD**.



Tamanho	Padrão	Conexão de Encaixe	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	ΚV
1" ; DN25	Globo	Rosqueado	1.1	115	68	34	71	0.02	13
1½" ; DN40	Globo	Rosqueado	2	153	87	29	98	0.06	29
2" ; DN50	Globo	Rosqueado	4	180	114	39	119	0.113	57
2" ; DN50	Globo	Flangeado	9	205	155	78	155	0.113	57
2" ; DN50	Globo	Ranhurado	5	205	108	31	119	0.113	57
2" ; DN50	Angular	Rosqueado	4.4	86	136	61	119	0.113	71
2" ; DN50	Angular	Flangeado	9	120	160	83	155	0.113	71
2½"; DN65	Globo	Rosqueado	5.7	210	132	45	129	0.179	78
2½"; DN65	Globo	Flangeado	10.5	205	178	89	178	0.179	78
2½"; DN65	Angular	Rosqueado	5.8	110	180	93	131	0.179	88
3R"-; DN80R	Globo	Rosqueado	5.8	210	140	53	129	0.291	136
3R"-; DN80R	Globo	Flangeado	12.1	210	200	100	200	0.291	136
3R"-; DN80R	Angular	Rosqueado	7	110	178	91	131	0.291	152
3"; DN80	Globo	Rosqueado	13	255	165	55	170	0.291	136
3"; DN80	Globo	Flangeado	19	250	210	100	200	0.291	136
3"; DN80	Globo	Ranhurado	10.6	250	155	46	170	0.291	136
3"; DN80	Angular	Rosqueado	11	110	184	80	170	0.291	152
3"; DN80	Angular	Flangeado	17	153	205	101	200	0.291	152
3"; DN80	Angular	Ranhurado	10	120	194	90	170	0.291	152
4"; DN100	Globo	Flangeado	28	320	242	112	223	0.668	204
4" ; DN100	Globo	Ranhurado	16.2	320	191	61	204	0.668	204
4" ; DN100	Angular	Flangeado	26	160	223	112	223	0.668	225
4"; DN100	Angular	Ranhurado	16	160	223	112	204	0.668	225
6" ; DN150	Globo	Flangeado	68	415	345	140	306	1.973	458
6" ; DN150	Globo	Ranhurado	49	415	302	85	306	1.973	458
8"; DN200	Globo	Flangeado	125	500	430	170	365	3.858	781
10" ; DN250	Globo	Flangeado	140	605	460	202	405	3.858	829
12" ; DN300	Globo	Flangeado	290	725	635	242	580	13.75	1932

CCDV = Volume de Deslocamento da Câmara de Controle • Rosqueada = BSP e NPT estão disponíveis.

Gráfico de Fluxo

Cálculo de Fluxo e Diferencial de Pressão

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = \text{bar}$

www.bermad.com

As informações aqui contidas podem ser alteradas pela BERMAD sem aviso prévio. A BERMAD não se responsabiliza por quaisquer erros

© Copyright 2015-2025 BERMAD CS Ltd.