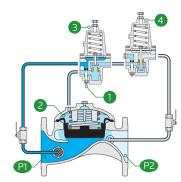


VANNE DE RÉDUCTION ET DE MAINTIEN DE PRESSION

Modèle IR-423-2W-R

La vanne de réduction et de maintien de pression BERMAD est une vanne de contrôle à commande hydraulique et à membrane, dotée de deux fonctions indépendantes. Elle maintient une pression amont minimale préréglée, quel que soit le débit variable ou la pression aval fluctuante, et elle empêche la pression aval de dépasser la valeur maximale préréglée, quel que soit le débit variable ou une pression amont excessive.

Caractéristiques et avantages


- PRV et PSV pilotés par la pression de ligne
 - Donne la priorité aux zones de pression
 - Protège les zones de basse pression
 - Remplissage du système de commandes
 - Empêche la vidange des canalisations
 - Protège la pompe contre la surcharge et la cavitation
 - Compense lors du prélèvement des eaux souterraines
- Corps au design hydro-effiscient
 - Voie d'écoulement dégagée
 - Une seule pièce mobile
 - Capacité de débit élevée
- Diaphragme entièrement soutenu & équilibré
 - Nécessite une faible pression d'actionnement
 - Excellentes performances de régulation à faibles débits
 - Fermeture progressive de la vanne
 - Empêche la déformation du diaphragme
- Conception facile d'utilisation
 - Réglage facile de la pression
 - Inspection et entretien simples en ligne

Applications types

- Lignes d'alimentation en aval
- Prévention du vidage des lignes
- Priorisation des zones à haute pression
- Protection des zones de basse pression
- Contrôle du remplissage de la ligne
- Protection contre les surcharges et la cavitation de la pompe
- Compensation de retrait de la pompe Deep Well

Fonctionnement:

Le pilote de réduction de pression (PRP) 🚺 est raccordé hydrauliquement à la chambre de contrôle de la vanne [2] via le pilote de maintien de pression (PMP) [3]. Le PMP commande la fermeture progressive de la vanne si la pression amont [P1] descend en dessous du réglage. Lorsque [P1] dépasse le réglage, le PMP bascule et permet au PRP de contrôler la vanne, lui ordonnant de se fermer progressivement si la pression aval [P2] dépasse le réglage et de s'ouvrir progressivement lorsqu'elle descend en dessous du réglage. La vanne d'arrêt aval [4] permet la fermeture manuelle.

Données techniques

Pression nominale:

16 bar

Plage de pression de fonctionnement:

0.5-16 bar

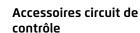
Matériaux

Corps et couvercle:

Fonte (jusqu'à 8 pouces) Fonte ductile (10 et 12 pouces)

Membrane:

NR, tissu en nylon renforcé

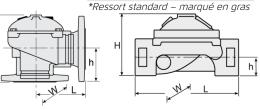

Ressort:

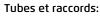
Acier inoxydable

*D'autres matériaux sont disponibles sur demande

Données techniques

Pour d'autres types de raccords d'extrémité, veuillez consulter la page d'ingénierie complète de **BERMAD**.

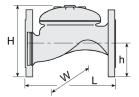



Pilote de réduction de pression: PC-20-A-MP

Pilote de maintien de pression: PC-30-A-MP

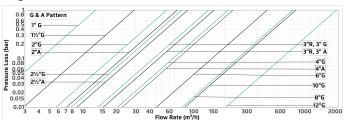
Plage de pression du pilote:

Ressort	Couleur du ressort	Plage de réglage		
N	Naturel	0.8-6.5 bar		
V	Bleu et blanc	1.0-10.0 bar		



Composite et laiton

*Pilotes PC-20-A-MP; PC-30-A-MP pour tailles jusqu'à 4" *Pilotes 2PBL ; 3PBL pour tailles


6"-12"

	1-								
Taille	Forme	Raccordement entrée/sortie	Poids (Kg)	L (mm)	H (mm)	h (mm)	w	CCDV (Lit)	KV
1" ; DN25	Globe	Taraudée	1.1	115	68	34	71	0.02	13
1½" ; DN40	Globe	Taraudée	2	153	87	29	98	0.06	29
2" ; DN50	Globe	Taraudée	4	180	114	39	119	0.113	57
2" ; DN50	Globe	À bride	9	205	155	78	155	0.113	57
2" ; DN50	Globe	Rainuré	5	205	108	31	119	0.113	57
2" ; DN50	Angle	Taraudée	4.4	86	136	61	119	0.113	71
2" ; DN50	Angle	À bride	9	120	160	83	155	0.113	71
2½"; DN65	Globe	Taraudée	5.7	210	132	45	129	0.179	78
2½" ; DN65	Globe	À bride	10.5	205	178	89	178	0.179	78
2½"; DN65	Angle	Taraudée	5.8	110	180	93	131	0.179	88
3R"- ; DN80R	Globe	Taraudée	5.8	210	140	53	129	0.291	136
3R"- ; DN80R	Globe	À bride	12.1	210	200	100	200	0.291	136
3R"- ; DN80R	Angle	Taraudée	7	110	178	91	131	0.291	152
3" ; DN80	Globe	Taraudée	13	255	165	55	170	0.291	136
3" ; DN80	Globe	À bride	19	250	210	100	200	0.291	136
3" ; DN80	Globe	Rainuré	10.6	250	155	46	170	0.291	136
3" ; DN80	Angle	Taraudée	11	110	184	80	170	0.291	152
3" ; DN80	Angle	À bride	17	153	205	101	200	0.291	152
3" ; DN80	Angle	Rainuré	10	120	194	90	170	0.291	152
4" ; DN100	Globe	À bride	28	320	242	112	223	0.668	204
4" ; DN100	Globe	Rainuré	16.2	320	191	61	204	0.668	204
4" ; DN100	Angle	À bride	26	160	223	112	223	0.668	225
4" ; DN100	Angle	Rainuré	16	160	223	112	204	0.668	225
6" ; DN150	Globe	À bride	68	415	345	140	306	1.973	458
6" ; DN150	Globe	Rainuré	49	415	302	85	306	1.973	458
8" ; DN200	Globe	À bride	125	500	430	170	365	3.858	781
10" ; DN250	Globe	À bride	140	605	460	202	405	3.858	829
12" ; DN300	Globe	À bride	290	725	635	242	580	13.75	1932

CCDV = Volume de déplacement de la chambre de contrôle • Fileté = BSP & NPT sont disponibles.

Plage de débit

Calcul de la pression différentielle et du débit

$$\Delta P = \left(\frac{Q}{KV}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

www.bermad.com

Les informations contenues dans ce document peuvent etre modifiees par BERMAD sans preavis. BERMAD ne peut etre tenu responsable des erreurs eventuelles.

© Copyright 2015-2025 BERMAD CS Ltd