

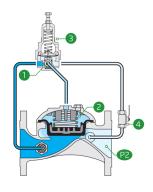
VÁLVULA REDUCTORA DE PRESIÓN CON DERIVACIÓN POR BAJO CAUDAL

Modelo IR-420-2W-R

La válvula reductora de presión Modelo 420-2W-R de BERMAD es una válvula de control accionada por diafragma y operada hidráulicamente, que reduce la presión superior aquas arriba a una presión inferior constante aguas abajo, independientemente de la fluctuación de la demanda o de la variación de la presión aquas arriba.

- [1] El Modelo IR-420-2W-R de BERMAD establece una zona de presión reducida para proteger los laterales y la línea de distribución.
- [2] Válvula de aire combinada Modelo IR-C30
- [3] Hidrómetro Modelo IR-900-M0 con transmisión magnética
- [4] Válvula Hidráulica de Retrolavado de Filtro Modelo IR-350
- [5] Hidrómetro Modelo IR-900-M0 con transmisión magnética

Características y ventajas


- Válvula reductora de presión accionada por presión en la línea
 - Protege los sistemas aguas abajo
- Diseño avanzado hidroeficiente en forma de globo
 - Trayectoria de flujo sin obstrucciones
 - Una sola pieza móvil
 - Alta capacidad de flujo
- Diafragma totalmente equilibrado con soporte periférico
 - Baja presión de accionamiento
 - Excelente regulación con caudales bajos
 - Restringe progresivamente el cierre de la válvula.
 - Evita la distorsión del diafragma
- Diseño de facil manejo
 - Fácil ajuste de presión
 - Fácil incorporación de funciones de control
 - Inspección y mantenimiento sencillos en línea

Aplicaciones típicas

- Sistemas reductores de presión
- Reducción de flujo y fugas
- Protección contra daños por cavitación
- Zonificación de la presión
- Líneas de suministro cuesta abajo
- Ahorros en mantenimiento del sistema

Operación:

La restricción aguas arriba 🔟 conecta continuamente la presión de comando con la cámara de control de la válvula [2] y el drenaje del circuito. El piloto reductor de presión 🖪 detecta y reacciona acorde a la presión aguas abajo [P2] . Cuando se eleva por encima del ajuste, el piloto restringe el drenaje, forzando la acumulación de presión en la cámara de control y el cierre progresivo de la válvula, disminuyendo la presión aguas abajo al ajuste del piloto. El piloto libera la presión acumulada de la cámara de control cuando la presión aguas abajo cae por debajo del ajuste, lo que provoca que la válvula se abra. La Restricción 🚺 controla la velocidad de cierre. La válvula de bola aguas abajo [4] permite el cierre manual.

IR-420-2W-R

Datos técnicos

Presión nominal:

16 bar

Presiones de trabajo:

0.5-16 bar

Materiales

Cuerpo y tapa:

Hierro fundido (hasta 8") Hierro dúctil (10" y 12")

Diafragma:

NR, Nylon reforzado

Resorte (muelle):

Acero inoxidable

*Otros materiales están disponibles a pedido

Accesorios del circuito de control

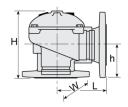
Piloto Reductor: PC-20-A-

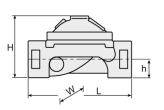
MP

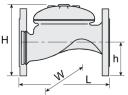
Gama de resorte de piloto:

Resorte (muelle)		rango de ajuste		
N	Natural	0.8-6.5 bar		
V	Azul v blanco	1.0-10.0 bar		

Resorte estándar - marcado en negrita


Tuberías y conectores:

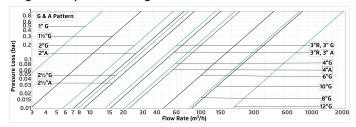

Plástico reforzado y latón


*Para otros pilotos se recomienda consultar con BERMAD

Especificaciones técnicas

Consulte la página completa de ingeniería de <u>BERMAD</u> acerca de otras formas y tipos de conectores.

Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	ΚV
1" ; DN25	Globo	Rosca	1.1	115	68	34	71	0.02	13
1½" ; DN40	Globo	Rosca	2	153	87	29	98	0.06	29
2" ; DN50	Globo	Rosca	4	180	114	39	119	0.113	57
2" ; DN50	Globo	Embridada	9	205	155	78	155	0.113	57
2" ; DN50	Globo	Ranura (Victaulic)	5	205	108	31	119	0.113	57
2" ; DN50	Angular	Rosca	4.4	86	136	61	119	0.113	71
2" ; DN50	Angular	Embridada	9	120	160	83	155	0.113	71
2½" ; DN65	Globo	Rosca	5.7	210	132	45	129	0.179	78
2½" ; DN65	Globo	Embridada	10.5	205	178	89	178	0.179	78
2½" ; DN65	Angular	Rosca	5.8	110	180	93	131	0.179	88
3R"- ; DN80R	Globo	Rosca	5.8	210	140	53	129	0.291	136
3R"- ; DN80R	Globo	Embridada	12.1	210	200	100	200	0.291	136
3R"- ; DN80R	Angular	Rosca	7	110	178	91	131	0.291	152
3" ; DN80	Globo	Rosca	13	255	165	55	170	0.291	136
3" ; DN80	Globo	Embridada	19	250	210	100	200	0.291	136
3" ; DN80	Globo	Ranura (Victaulic)	10.6	250	155	46	170	0.291	136
3" ; DN80	Angular	Rosca	11	110	184	80	170	0.291	152
3" ; DN80	Angular	Embridada	17	153	205	101	200	0.291	152
3" ; DN80	Angular	Ranura (Victaulic)	10	120	194	90	170	0.291	152
4" ; DN100	Globo	Embridada	28	320	242	112	223	0.668	204
4" ; DN100	Globo	Ranura (Victaulic)	16.2	320	191	61	204	0.668	204
4" ; DN100	Angular	Embridada	26	160	223	112	223	0.668	225
4" ; DN100	Angular	Ranura (Victaulic)	16	160	223	112	204	0.668	225
6" ; DN150	Globo	Embridada	68	415	345	140	306	1.973	458
6" ; DN150	Globo	Ranura (Victaulic)	49	415	302	85	306	1.973	458
8" ; DN200	Globo	Embridada	125	500	430	170	365	3.858	781
10" ; DN250	Globo	Embridada	140	605	460	202	405	3.858	829
12" ; DN300	Globo	Embridada	290	725	635	242	580	13.75	1932


CCDV = Volumen de desplazamiento de la cámara de control • Rosca = BSP & NPT están disponibles.

Características adicionales

Código	Descripción	Rango de tamaños
F	Large control filter	1½"-12" / DN40-300
М	Cierre mecánico	1½"-12" / DN40-300
I	Conjunto indicador de posición	1½"-12" / DN40-300
55	Con control de solenoide	1½"-12" / DN40-300

www.bermad.com

Diagrama de pérdida de carga

Circuito de 2 vías "Pérdida de carga añadida" (para "V" por debajo de 2 m/s): 0,3 bar

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^2 \qquad Kv = m^3/h \oplus \Delta P \text{ of 1 bar}$$

$$Q = m^3/h$$

$$\Delta P = bas$$

La informacion contenida en este documento podrá ser modificada por BERMAD sin previo aviso. BERMAD no asume ninguna responsabilidad por los errores que pudiera contener. © Copyright 2015-2025 BERMAD CS Ltd October 2025

