

VÁLVULA REDUTORA DE PRESSÃO

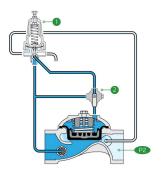
Modelo IR-420-3W-KXZ

A Válvula Redutora de Pressão BERMAD é uma válvula de controle operada hidraulicamente, acionada por diafragma, que reduz a pressão elevada a montante para uma pressão constante e mais baixa a jusante, independentemente da variação da demanda, e abre totalmente quando ocorre queda de pressão na linha.

[1] O Modelo BERMAD IR-420-3W-KXZ estabelece uma zona de pressão reduzida, protegendo as laterais e a linha de distribuição.

- [2] Válvula de Ar Cinética Modelo IR-K10
- [3] Válvula Combinada de Ar Modelo IR-C30

Benefícios e Características


- Controle de Pressão Hidráulico
 - Acionada por pressão de linha
 - Protege sistemas do fluxo de saída
 - Abre totalmente mediante queda na pressão de linha
- Projeto de Válvula Globo Hidroeficiente Avançado
 - Percurso de fluxo sem obstruções
 - Peça móvel única
 - Alta capacidade de fluxo
- Diafragma Totalmente Suportado e Balanceado
 - Requer baixa pressão de atuação
 - Excelentes desempenhos de regulagem em baixo fluxo
 - Restringe progressivamente o fechamento da válvula
 - Evita a distorção do diafragma
- Design Fácil de Usar
 - Fácil configuração de pressão
 - Inspeção e Serviço Simples em Linha
 - Fácil adição de recursos de controle

Aplicações Típicas

- Estações de Redução de Pressão
- Sistemas Sujeitos a Diferentes Pressões de Alimentação

Operação:

O Piloto Redutor de Pressão 间 comanda a válvula principal para modular o fechamento caso a Pressão a Jusante [P2] ultrapasse o ajuste do piloto e para abrir totalmente quando ela cair abaixo do ajuste do piloto. O Seletor Manual [2] permite o fechamento manual local.

Redução de pressão

Dados Técnicos

Classe de Pressão: 10 bar

Faixa de Pressão Operacional: 0.5-10 bar

Materiais

Corpo e Tampa: Ferro fundido

Diafragma:

NR, tecido de nylon reforçado

Mola:

Aço inox

*Outros materiais estão disponíveis mediante solicitação

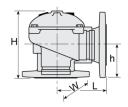
Acessórios do Circuito de Controle

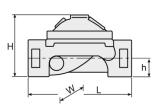
Piloto PR: PC-SHARP-X-P

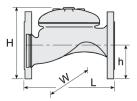
Faixa da Mola do Piloto:

Mola	Cor da Mola	Faixa de ajuste
J		0.2-1.7 bar
K		0.5-3.0 bar
N		0.8-6.5 bar
V		1.0-10.0 bar

Mola padrão - marcada em negrito

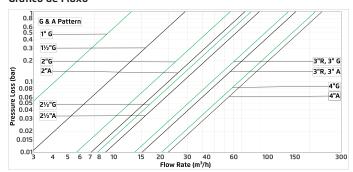

Tubulação e Conexões:


Polietileno


*Para outros pilotos, consulte a <u>BERMAD</u>

Especificações Técnicas

Para outros tipos de conexões de encaixe, consulte a página de engenharia completa da **BERMAD**.


Tamanho	Padrão	Conexão de Encaixe	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1" ; DN25	Globo	Rosqueado	1.1	115	68	34	71	0.02	13
1½"; DN40	Globo	Rosqueado	2	153	87	29	98	0.06	29
2"; DN50	Globo	Rosqueado	4	180	114	39	119	0.113	57
2"; DN50	Globo	Flangeado	9	205	155	78	155	0.113	57
2" ; DN50	Globo	Ranhurado	5	205	108	31	119	0.113	57
2" ; DN50	Angular	Rosqueado	4.4	86	136	61	119	0.113	71
2" ; DN50	Angular	Flangeado	9	120	160	83	155	0.113	71
2½"; DN65	Globo	Rosqueado	5.7	210	132	45	129	0.179	78
2½"; DN65	Globo	Flangeado	10.5	205	178	89	178	0.179	78
2½"; DN65	Angular	Rosqueado	5.8	110	180	93	131	0.179	88
3R"-; DN80R	Globo	Rosqueado	5.8	210	140	53	129	0.291	136
3R"-; DN80R	Globo	Flangeado	12.1	210	200	100	200	0.291	136
3R"-; DN80R	Angular	Rosqueado	7	110	178	91	131	0.291	152
3"; DN80	Globo	Rosqueado	13	255	165	55	170	0.291	136
3"; DN80	Globo	Flangeado	19	250	210	100	200	0.291	136
3"; DN80	Globo	Ranhurado	10.6	250	155	46	170	0.291	136
3"; DN80	Angular	Rosqueado	11	110	184	80	170	0.291	152
3"; DN80	Angular	Flangeado	17	153	205	101	200	0.291	152
3"; DN80	Angular	Ranhurado	10	120	194	90	170	0.291	152
4"; DN100	Globo	Flangeado	28	320	242	112	223	0.668	204
4"; DN100	Globo	Ranhurado	16.2	320	191	61	204	0.668	204
4" ; DN100	Angular	Flangeado	26	160	223	112	223	0.668	225
4" ; DN100	Angular	Ranhurado	16	160	223	112	204	0.668	225

CCDV = Volume de Deslocamento da Câmara de Controle • Rosqueada = BSP e NPT estão disponíveis.

Características Adicionais

Código	Descrição	Faixa de Tamanho
I	Conjunto do Indicador de Posição	1½"-4" / DN40-100
М	Fecho Mecânico	1½"-4" / DN40-100
5	Ponto de Teste Plástico	1½"-4" / DN40-100

Gráfico de Fluxo

Cálculo de Fluxo e Diferencial de Pressão

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

www.bermad.com

As informações aqui contidas podem ser alteradas pela BERMAD sem aviso prévio. A BERMAD não se responsabiliza por quaisquer erros