

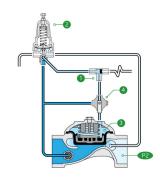
VANNE DE RÉDUCTION DE PRESSION

Modèle IR-420-50-3W-KXZ

La vanne de réduction de pression BERMAD à commande hydraulique à distance est une vanne de régulation à commande hydraulique et à membrane, qui réduit une pression amont élevée à une pression aval constante plus basse, indépendamment des variations de la demande, et s'ouvre complètement en cas de chute de pression dans la conduite. Elle s'ouvre ou se ferme en réponse à une consigne de pression à distance.

- [1] Le modèle BERMAD IR-420-50-3W-KXZ s'ouvre sur commande de chute de pression et établit une zone de pression protégeant les latéraux et la ligne de distribution.
- [2] Hydromètre Modèle IR-900-M0 Entraînement magnétique
- [3] Vanne d'air combinée modèle IR-C10
- [4] Vanne d'air combinée modèle IR-C30
- [5] Contrôleur d'irrigation intelligent OMEGA

Caractéristiques et avantages


- Régulation de la pression hydraulique
 - Piloté par la pression de ligne
 - Protège les systèmes en aval
 - S'ouvre complètement en cas de chute de pression
 - Marche/arrêt à commande hydraulique
- Corps au design hydro-effiscient
 - Voie d'écoulement dégagée
 - Une seule pièce mobile
 - Capacité de débit élevée
- Diaphragme entièrement soutenu & équilibré
 - Nécessite une faible pression d'actionnement
 - Excellentes performances de régulation à faibles débits
 - Fermeture progressive de la vanne
 - Empêche la déformation du diaphragme
- Conception facile d'utilisation
 - Réglage facile de la pression
 - Inspection et entretien simples en ligne

Applications types

- modernisation du pilotage des réseaux d'irrigation
- Systèmes de réduction de pression
- Systèmes soumis à une pression d'alimentation variable
- Tête et poste de distribution d'irrigation

Fonctionnement:

La vanne navette 🗻 relie hydrauliquement le pilote de réduction de pression (PRP) [2] à la chambre de commande de la vanne [3].Le PRP commande la fermeture progressive de la vanne lorsque la pression en aval [P2] dépasse le réglage du pilote, et son ouverture complète lorsque la pression descend en dessous de ce réglage.Lors d'une augmentation de la pression de commande, la vanne navette bascule automatiquement, permettant la mise sous pression de la chambre de commande, ce qui provoque la fermeture de la vanne principale.Le sélecteur manuel 4 permet une fermeture manuelle locale.

Réduction de pression

Données techniques

Pression nominale: 10 bar

Plage de pression de fonctionnement:

0.5-10 bar

Matériaux

Corps et couvercle:

Fonte

Membrane:

NR, tissu en nylon renforcé

Ressort:

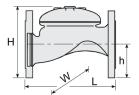
Acier inoxydable

*D'autres matériaux sont disponibles sur demande

Accessoires circuit de contrôle

Pilote de réduction de pression: PC-SHARP-X-P

Plage de pression du pilote:


_					
Ressort	Couleur du ressort	Plage de réglage			
J	Vert	0.2-1.7 bar			
K	Gris	0.5-3.0 bar			
N	Naturel	0.8-6.5 bar			
V	Bleu et blanc	1.0-10.0 bar			

*Ressort standard – marqué en gras

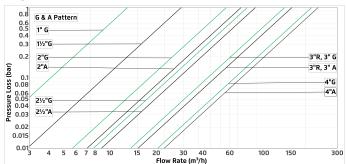
Tubes et raccords:

Polyéthylène et polypropylène

*Pour d'autres pilotes, veuillez consulter **BERMAD**

h

Données techniques		1
Pour d'autres types de raccords d'extrémité,		
veuillez consulter la page d'ingénierie complète de <u>BERMAD</u>	H	H


Taille	Forme	Raccordement entrée/sortie	Poids (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1" ; DN25	Globe	Taraudée	1.1	115	68	34	71	0.02	13
1½"; DN40	Globe	Taraudée	2	153	87	29	98	0.06	29
2" ; DN50	Globe	Taraudée	4	180	114	39	119	0.113	57
2" ; DN50	Globe	À bride	9	205	155	78	155	0.113	57
2" ; DN50	Globe	Rainuré	5	205	108	31	119	0.113	57
2" ; DN50	Angle	Taraudée	4.4	86	136	61	119	0.113	71
2" ; DN50	Angle	À bride	9	120	160	83	155	0.113	71
2½"; DN65	Globe	Taraudée	5.7	210	132	45	129	0.179	78
2½"; DN65	Globe	À bride	10.5	205	178	89	178	0.179	78
2½"; DN65	Angle	Taraudée	5.8	110	180	93	131	0.179	88
3R"- ; DN80R	Globe	Taraudée	5.8	210	140	53	129	0.291	136
3R"- ; DN80R	Globe	À bride	12.1	210	200	100	200	0.291	136
3R"- ; DN80R	Angle	Taraudée	7	110	178	91	131	0.291	152
3"; DN80	Globe	Taraudée	13	255	165	55	170	0.291	136
3"; DN80	Globe	À bride	19	250	210	100	200	0.291	136
3"; DN80	Globe	Rainuré	10.6	250	155	46	170	0.291	136
3"; DN80	Angle	Taraudée	11	110	184	80	170	0.291	152
3"; DN80	Angle	À bride	17	153	205	101	200	0.291	152
3"; DN80	Angle	Rainuré	10	120	194	90	170	0.291	152
4"; DN100	Globe	À bride	28	320	242	112	223	0.668	204
4" ; DN100	Globe	Rainuré	16.2	320	191	61	204	0.668	204
4" ; DN100	Angle	À bride	26	160	223	112	223	0.668	225
4"; DN100	Angle	Rainuré	16	160	223	112	204	0.668	225

CCDV = Volume de déplacement de la chambre de contrôle • Fileté = BSP & NPT sont disponibles.

Caractéristiques supplémentaires

Code	Description	Tailles disponibles
ı	Assemblage d'indicateur de position	1½"-4" / DN40-100
М	Limiteur d'ouverture	1½"-4" / DN40-100
5	Prise pression plastique	1½"-4" / DN40-100

Plage de débit

Calcul de la pression différentielle et du débit

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = \text{bar}$

www.bermad.com

Les informations contenues dans ce document peuvent etre modifiees par BERMAD sans preavis. BERMAD ne peut etre tenu responsable des erreurs eventuelles.

© Copyright 2015-2025 BERMAD CS Ltd