

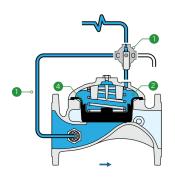
VÁLVULA DE CONTROL HIDRÁULICA

Modelo IR-405-RZ

The BERMAD Hydraulic Control Valve is a hydraulically operated, diaphragm actuated control valve that opens and shuts in response to a local or remote pressure command.

[1] El modelo BERMAD IR-405-RZ se abre mediante un comando manual local.

Características y ventajas


- Válvula de control hidráulica
- Accionada por la presión en la línea
 - Encendido/apagado controlado hidráulicamente
- Diseño avanzado hidroeficiente en forma de globo
 - Trayectoria de flujo sin obstrucciones
 - Una sola pieza móvil
 - Alta capacidad de flujo
- Diafragma totalmente equilibrado con soporte periférico
 - Requiere una baja presión de apertura y accionamiento
 - Restringe progresivamente el cierre de la válvula.
 - Evita la distorsión del diafragma
- Diseño de facil manejo
 - Simple in-line inspectionInspeccion facil en-linea
 - Fácil incorporación de funciones de control

Aplicaciones típicas

- Sistemas de riego automatizados
- Centros de distribución
- Máquinas de Riego
- Sistemas de Riego con Presión de Suministro baja

Operación:

La presión de línea o la presión de mando remoto 🚺 se aplica a la cámara de control [2] a través del selector manual [3]. Esto genera una fuerza de cierre superior que mueve el conjunto de diafragma [4] hacia la posición de cerrado. Al descargar la presión de la cámara de control, la presión de línea que actúa sobre el conjunto de diafragma mueve la válvula a la posición de abierto.

IR-405-R7

Datos técnicos

Presión nominal:

16 bar

Presiones de trabajo:

0.5-16 bar

Materiales

Cuerpo y tapa:

Hierro fundido (hasta 8") Hierro dúctil (10" y 12")

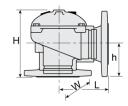
Diafragma:

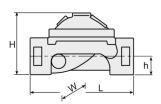
NR, Nylon reforzado

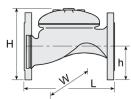
Resorte (muelle):

Acero inoxidable

*Otros materiales están disponibles a pedido

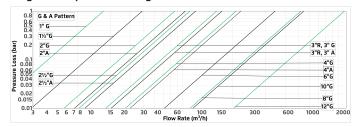

Accesorios del circuito de control


Tuberías y conectores:


Plástico reforzado y latón

Especificaciones técnicas

Consulte la página completa de ingeniería de <u>BERMAD</u> acerca de otras formas y tipos de conectores.


Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1" ; DN25	Globo	Rosca	1.1	115	68	34	71	0.02	13
1½" ; DN40	Globo	Rosca	2	153	87	29	98	0.06	29
2" ; DN50	Globo	Rosca	4	180	114	39	119	0.113	57
2" ; DN50	Globo	Embridada	9	205	155	78	155	0.113	57
2" ; DN50	Globo	Ranura (Victaulic)	5	205	108	31	119	0.113	57
2" ; DN50	Angular	Rosca	4.4	86	136	61	119	0.113	71
2" ; DN50	Angular	Embridada	9	120	160	83	155	0.113	71
2½"; DN65	Globo	Rosca	5.7	210	132	45	129	0.179	78
2½"; DN65	Globo	Embridada	10.5	205	178	89	178	0.179	78
2½"; DN65	Angular	Rosca	5.8	110	180	93	131	0.179	88
3R"-; DN80R	Globo	Rosca	5.8	210	140	53	129	0.291	136
3R"-; DN80R	Globo	Embridada	12.1	210	200	100	200	0.291	136
3R"- ; DN80R	Angular	Rosca	7	110	178	91	131	0.291	152
3"; DN80	Globo	Rosca	13	255	165	55	170	0.291	136
3"; DN80	Globo	Embridada	19	250	210	100	200	0.291	136
3"; DN80	Globo	Ranura (Victaulic)	10.6	250	155	46	170	0.291	136
3"; DN80	Angular	Rosca	11	110	184	80	170	0.291	152
3"; DN80	Angular	Embridada	17	153	205	101	200	0.291	152
3"; DN80	Angular	Ranura (Victaulic)	10	120	194	90	170	0.291	152
4"; DN100	Globo	Embridada	28	320	242	112	223	0.668	204
4"; DN100	Globo	Ranura (Victaulic)	16.2	320	191	61	204	0.668	204
4"; DN100	Angular	Embridada	26	160	223	112	223	0.668	225
4" ; DN100	Angular	Ranura (Victaulic)	16	160	223	112	204	0.668	225
6" ; DN150	Globo	Embridada	68	415	345	140	306	1.973	458
6" ; DN150	Globo	Ranura (Victaulic)	49	415	302	85	306	1.973	458
8"; DN200	Globo	Embridada	125	500	430	170	365	3.858	781
10" ; DN250	Globo	Embridada	140	605	460	202	405	3.858	829
12" ; DN300	Globo	Embridada	290	725	635	242	580	13.75	1932

CCDV = Volumen de desplazamiento de la cámara de control • Rosca = BSP & NPT están disponibles.

Características adicionales

١	Código	Descripción	Rango de tamaños
	F	Large control filter	1½"-12" / DN40-300
	I	Conjunto indicador de posición	1½"-12" / DN40-300
	М	Cierre mecánico	1½"-12" / DN40-300

Diagrama de pérdida de carga

Circuito de 2 vías "Pérdida de carga añadida" (para "V" por debajo de 2 m/s): 0,3 bar

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $\begin{pmatrix} Kv = 0 \\ Q \\ AD \end{pmatrix}$

$$Kv = m^3/h \oplus \Delta P \text{ of 1 bar}$$

 $Q = m^3/h$

www.bermad.com

La informacion contenida en este documento podrá ser modificada por BERMAD sin previo aviso. BERMAD no asume ninguna responsabilidad por los errores que pudiera contener. © Copyright 2015-2025 BERMAD CS Ltd September 2025