

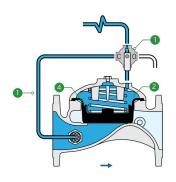
VÁLVULA DE CONTROLE HIDRÁULICO

Modelo IR-405-RZ

A Válvula de Controle Hidráulico BERMAD é uma válvula de controle operada hidraulicamente, acionada por diafragma, que abre e fecha em resposta a um comando de pressão local ou remoto.

[1] O Modelo BERMAD IR-405-RZ abre mediante comando manual local.

Benefícios e Características


- Válvula de Controle Hidráulico
 - Acionada por pressão de linha
 - On/Off controlada hidraulicamente
- Projeto de Válvula Globo Hidroeficiente Avançado
 - Percurso de fluxo sem obstruções
 - Peça móvel única
 - Alta capacidade de fluxo
- Diafragma Totalmente Suportado e Balanceado
 - Requer baixa pressão de abertura e atuação
 - Restringe progressivamente o fechamento da válvula
 - Evita a distorção do diafragma
- Design Fácil de Usar
 - Início simples em linha
 - Fácil adição de recursos de controle

Aplicações Típicas

- Sistemas de Irrigação Automatizados
- Centros de Distribuição
- Máguinas de Irrigação
- Sistemas de Irrigação de Baixa Pressão Fornecida

Operação:

A pressão da linha ou a pressão de comando remoto 间 é aplicada à Câmara de Controle [2] através do Seletor Manual [3]. Isso cria uma força de fechamento superior que move o Conjunto do Diafragma [4] para a posição fechada. A descarga da pressão da câmara de controle faz com que a pressão da linha atuando sobre o conjunto do diafragma mova a válvula para a posição aberta.

Dados Técnicos

Classe de Pressão:

16 bar

Faixa de Pressão Operacional:

0.5-16 bar

Materiais

Corpo e Tampa:

Ferro fundido (até 8") Ferro dúctil (10" e 12")

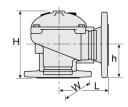
Diafragma:

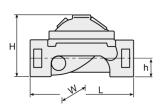
NR, tecido de nylon reforçado

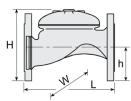
Mola:

Aço inox

*Outros materiais estão disponíveis mediante solicitação

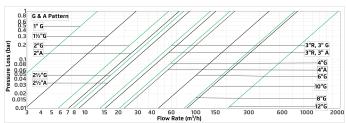

Acessórios do Circuito de Controle


Tubulação e Conexões:


Plástico Reforçado e Latão

Especificações Técnicas

Para outros tipos de conexões de encaixe, consulte a página de engenharia completa da <u>BERMAD</u>.


Tamanho	Padrão	Conexão de Encaixe	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1" ; DN25	Globo	Rosqueado	1.1	115	68	34	71	0.02	13
1½" ; DN40	Globo	Rosqueado	2	153	87	29	98	0.06	29
2" ; DN50	Globo	Rosqueado	4	180	114	39	119	0.113	57
2" ; DN50	Globo	Flangeado	9	205	155	78	155	0.113	57
2" ; DN50	Globo	Ranhurado	5	205	108	31	119	0.113	57
2" ; DN50	Angular	Rosqueado	4.4	86	136	61	119	0.113	71
2" ; DN50	Angular	Flangeado	9	120	160	83	155	0.113	71
2½" ; DN65	Globo	Rosqueado	5.7	210	132	45	129	0.179	78
2½" ; DN65	Globo	Flangeado	10.5	205	178	89	178	0.179	78
2½" ; DN65	Angular	Rosqueado	5.8	110	180	93	131	0.179	88
3R"- ; DN80R	Globo	Rosqueado	5.8	210	140	53	129	0.291	136
3R"- ; DN80R	Globo	Flangeado	12.1	210	200	100	200	0.291	136
3R"- ; DN80R	Angular	Rosqueado	7	110	178	91	131	0.291	152
3" ; DN80	Globo	Rosqueado	13	255	165	55	170	0.291	136
3" ; DN80	Globo	Flangeado	19	250	210	100	200	0.291	136
3" ; DN80	Globo	Ranhurado	10.6	250	155	46	170	0.291	136
3" ; DN80	Angular	Rosqueado	11	110	184	80	170	0.291	152
3" ; DN80	Angular	Flangeado	17	153	205	101	200	0.291	152
3" ; DN80	Angular	Ranhurado	10	120	194	90	170	0.291	152
4" ; DN100	Globo	Flangeado	28	320	242	112	223	0.668	204
4" ; DN100	Globo	Ranhurado	16.2	320	191	61	204	0.668	204
4" ; DN100	Angular	Flangeado	26	160	223	112	223	0.668	225
4" ; DN100	Angular	Ranhurado	16	160	223	112	204	0.668	225
6" ; DN150	Globo	Flangeado	68	415	345	140	306	1.973	458
6" ; DN150	Globo	Ranhurado	49	415	302	85	306	1.973	458
8" ; DN200	Globo	Flangeado	125	500	430	170	365	3.858	781
10" ; DN250	Globo	Flangeado	140	605	460	202	405	3.858	829
12" ; DN300	Globo	Flangeado	290	725	635	242	580	13.75	1932

CCDV = Volume de Deslocamento da Câmara de Controle • Rosqueada = BSP e NPT estão disponíveis.

Características Adicionais

Código	Descrição	Faixa de Tamanho
F	Filtro grande de controle	1½"-12" / DN40-300
I	Conjunto do Indicador de Posição	1½"-12" / DN40-300
М	Fecho Mecânico	1½"-12" / DN40-300

Gráfico de Fluxo

Circuito de 2 Vias "Perda de Carga Adicionada" (para "V" abaixo de 2 m/s): 0,3 bar

Cálculo de Fluxo e Diferencial de Pressão

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$

 $Kv = m^3/h \otimes \Delta P$ of 1 bar

 $Q = m^3/h$

 $\Delta P = bar$

www.bermad.com

As informações aqui contidas podem ser alteradas pela BERMAD sem aviso prévio. A BERMAD não se responsabiliza por quaisquer erros