

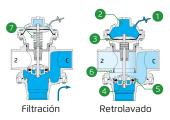
VÁLVULA HIDRÁULICA DE RETROLAVADO DE FILTROS

Modelo IR-4X4-350-P

El modelo IR-4x4-350-P de BERMAD es una válvula compacta de 3 puertos, de configuración en «T». Tiene doble cámara, funciona hidráulicamente y se acciona con diafragma. Diseñado para el retrolavado automático de sistemas de filtración, el modelo IR-4x4-350-P de BERMAD está disponible en configuraciones de flujo angular (A) y flujo recto (S).

- [1] El modelo IR-4X4-350-S-P de BERMAD permite que el flujo entre en el filtro, se conmuta a cerrado ante una orden de aumento de presión, bloquea la entrada al filtro y permite el flujo de retr
- [2] Válvula de alivio de presión modelo IR-43Q
- [3] Válvula de aire combinada modelo IR-C30
- [4] Válvula de aire combinada modelo IR-C10
- beidenetro sostenedor de presión modelo IR-930-M0-X

Flujo angular: un comando hidráulico [1], que presuriza la cámara de control superior [2], obliga al conjunto del tapón [4] accionado por el diafragma 3 a moverse hacia el asiento del puerto de suministro 5 y, finalmente, lo sella herméticamente. Esto permite que el flujo del filtro pase por el asiento del puerto de drenaje [6]. La ventilación de la cámara de control superior hace que la presión de la línea, junto con la fuerza del resorte [7], devuelvan la válvula al modo de


निर्धिल स्टिरा: un comando hidráulico 🕕 que presuriza la cámara de control inferior [2], obliga al conjunto del tapón [4] accionado por el diafragma 3 a moverse hacia el asiento del puerto de suministro 5 y, finalmente, lo sella herméticamente. Esto permite que el flujo del filtro pase por el asiento del puerto de drenaje [6]. La ventilación de la cámara de control superior hace que la presión de la línea, junto con la fuerza del Resorte [7], devuelvan la válvula al modo de tus africado de este catálogo se incluyen solo a título de ilustración

Características y ventajas

- Accionada por la presión en la línea
- Diseño de doble cámara
 - Amplio rango de aplicaciones
 - Baja presión de accionamiento
 - Diafragma protegido
- Sellado dinámico
 - Sella a muy baja presión
 - Previene la fricción y la erosión del sello
- Válvula de materiales compuestos con diseño de arado industrial
 - Altamente duradera y resistente a las sustancias químicas y los daños por cavitación
- Recorrido largo de la válvula
 - Mayor flujo y menor pérdida de carga
 - Cambios suaves de dirección del flujo
 - Elimina la mezcla del agua de suministro y las aguas residuales
- Diseño de facil manejo
 - Se puede instalar en varias orientaciones
 - Inspección y mantenimiento sencillos en línea

Aplicaciones típicas

- Lavado a contracorriente automático de baterías de filtracion
- Filtros de grava
- Filtros de arena
- Filtros de disco
- Filtros de malla
- Sistema de retrolav
- Instalaciones angul

Filtración

Retrolavado

Riego

Retrolavado de filtro

Datos técnicos

Presión nominal:

10 bar

Presiones de trabajo:

0.7-10 bar

Presión de operación externa:

85%-100% of operating

pressure

Temperatura máxima:

65°C

Materiales

Cuerpo y tapa:

Poliamida (nylon) 6 con 30% de fibra de vidrio

Tapa negra-Angel Flow Tapa gris-Straight Flow

*Hay otros materiales disponibles a petición

Asientos, arandelas de diafragma:

NR, Nylon reforzado

Tapones, arandelas de los tapones:

EPDM

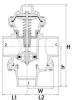
Disco de tope:

Acero inoxidable

Resorte (muelle): Acero inoxidable

Diafragma:

NR, Nylon reforzado


Acero inoxidable

Pernos, espárragos, tuercas y

discos externos: Acero inoxidable

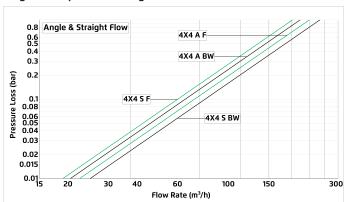
Sello, juntas tóricas:

NBR

Especificaciones técnicas

Consulte la página completa de ingeniería de **BERMAD** acerca de otras formas y tipos de conectores.

Tamaño (DN) Forma	Conexión	Peso (Kg)	L1 (mm)	L2 (mm)	H (mm)	h (mm)	W	CCDV (Lit)	Filtración KV	KV BW
4" ; 100	Flujo angular	Ranura (Victaulic)	9.9	138.5	178.5	464	225	130	0.55	190	250
4" ; 100	Flujo recto	Ranura (Victaulic)	9.9	138.5	178.5	464	225	130	0.55	225	205


VDCC = Volumen de descarga (desplazamiento) en la cámara de control Esquema de flujo

esquemo de nojo								
Flujo angular	Filtración 1⇒C	Retrolavado C⇒2						
Flujo recto	Filtración 2⇒C → □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Retrolavado C⇒1						

Características adicionales

Código	Descripción	Rango de tamaños
350-54	Válvula de retrolavado del filtro con acelerador hidráulico	2"-4" / DN50-100
350-55	Válvula de retrolavado del filtro, controlada por solenoide	2"-4" / DN50-100

Diagrama de pérdida de carga

A = Flujo angular BW = retrolavado F = Filtración S = Flujo recto

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h \text{ @ } \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

www.bermad.com