

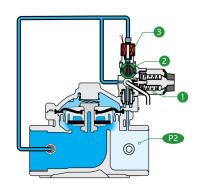
TOP PILOT PRESSURE REDUCING VALVE

Model IR-22T-LS-55-3W-X

The BERMAD Top Pilot Pressure Reducing Control Valves with solenoid control offer top performance, compact design and intuitive plug & play operation, thanks to an innovative integrated pilot, equipped with a high resolution adjustment dial for easy, quick & accurate calibration. Model IR-22T-55-3W-X reduces higher upstream pressure to a calibrated constant downstream pressure, regardless of flow fluctuations and opens fully when line pressure drops below setting. The valve opens & shuts in response to an electric signal. *This valve is designated for irrigation use only and not for other uses! Manufacturer

- BERMAD Model IR-22T-55-3W-X establishes reduced pressure zone, protecting laterals and distribution line.
- [2] Kinetic Air Valve Model IR-K10
- [3] Combination Air Valve Model IR-C10
- [4] RTU-Remote Terminal Unit

Features & Benefits


- Line Pressure Driven, Hydraulically Controlled On/Off
 - Protects downstream systems
 - Opens fully upon line pressure drop
- 3-Way Integrated Pilot User Friendly Design
 - Adjustment knob and high resolution scale for easy calibration without any pressure gauge
 - Compact "Box-Size" solution
 - Solenoid control is easily added or removed
 - Uniquely suitable to all size range up to 3"
- Smooth Valve Opening and Closing
 - Accurate and stable regulation
 - Low operating pressure requirements
- Composite Hydro-Efficient Globe Valve
 - Unobstructed flow path
 - Single moving part
 - High flow capacity
 - Highly durable, chemical and cavitation resistant
- Unitized Flexible Diaphragm and Guided Plug
 - Excellent low flow regulation performances
 - Prevents diaphragm erosion and distortion
- Fully Supported & Balanced Diaphragm
- Requires low actuation pressure

Typical Applications

- Automated Irrigation Systems
- Systems Subject to Varying Supply Pressure
- Plot Valves in Drip & Sprinklers Irrigation Systems
- Energy Saving Irrigation Systems

Operation:

The Pressure Reducing Pilot [1] commands the valve to throttle closed should Downstream Pressure [P2] rise above setting and to open fully when it drops below setting. The Integrated Trio Selector 2 enables manual closing and opening override or automatic operation, in which the solenoid [3] commands the valve to open or close in response to an electric signal.

Technical Data

Pressure Rating:

150 psi

Operating Pressure Range:

10-150 psi

Materials

Body & Cover:

Polyamide 6 & 30% GF

Diaphragm:

NBR

Spring: Stainless Steel

Control Loop Accessories

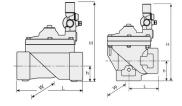
PR Pilot: Top Pilot

Pilot Spring Range:

Spring	Spring Color	Setting range	
Black	Black	12-80 psi	

- H2 for bar scale
- J2 for psi scale

Tubing and Fittings:

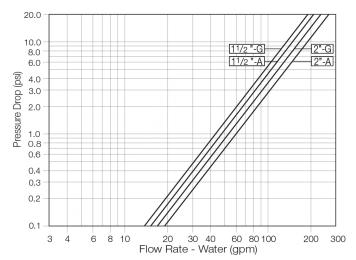

Polyethylene and Polypropylene

*For other solenoids please consult **BERMAD**

Technical Specifications

For other end connection types,

Please refer to **BERMAD** full engineering page.


Size	Pattern	End Connection	Weight (Lb)	L (In)	H (In)	h (ln)	w	CCDV (Gal)	cv
1½"; DN40	Globe	Threaded	2.84	6¾	9%	1%	5%	0.016	43
1½"; DN40	Angle	Threaded	2.73	31/8	81/2	15%	5%	0.016	47
2" ; DN50	Globe	Threaded	3	6¾	10	11/2	5%	0.016	54
2" ; DN50	Angle	Threaded	2.65	3%	9%	2%	5%	0.016	60

CCDV = Control Chamber Displacement Volume

Additional Features

Code	Description	Size Range
5	Plastic Test Point	1½"-2"
7	½" Anti Vacuum at Valve Downstream	11/2"-2"

Flow Chart

Differential Pressure & Flow Calculation

$$\Delta P = \left(\frac{Q}{Cv}\right)^2$$
 $Cv = gpm @ \Delta P \text{ of 1 psi}$
 $Q = gpm$
 $\Delta P = psi$

www.bermad.com

The information contained herein may be changed by BERMAD without notice. BERMAD shall not be held liable for any errors. © Copyright 2015-2025 BERMAD CS Ltd